

Outline


```
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications
Approximate Undo: SVD and
Least Squares
SVD: Applications
    Solving Funny-Shaped Linear
    Systems
    Data Fitting
    Norms and Condition
    Numbers
    Low-Rank Approximation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D
```


Some Perspective

- We have so far (mostly) looked at what we can do with single numbers (and functions that return single numbers).
- Things can get much more interesting once we allow not just one, but many numbers together.
- It is natural to view an array of numbers as one object with its own rules. The simplest such set of rules is that of a ector.
- A 2D array of numbers can also be looked at as a matrix.
- So it's natural to use the tools of computational linear algebra.
- 'Vector' and 'matrix' are just representations that come to life in many (many!) applications. The purpose of this section is to explore some of those applications.

Vectors from a CS Perspective
What would the concept of a vector look like in a programming language (e.g. Java)?
interface Vector l
Vector add (Vector other);
Vector scale (float $\}$ scalar),

Vectors in the 'Real World'

Demo: Images as Vectors
Demo: Sound as Vectors
Demo: Shapes as Vectors

Outline


```
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications
Approximate Undo: SVD and
Least Squares
SVD: Applications
    Solving Funny-Shaped Linear
    Systems
    Data Fitting
    Norms and Condition
    Numbers
    Low-Rank Approximation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D
```


Matrices

What does a matrix do?

It represents a linear function between two vector spaces $f: U \rightarrow V$ in terms of bases $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}$ of U and $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}$ of V. Let

$$
\boldsymbol{u}=\underline{\alpha}_{1} \boldsymbol{u}_{1}+\cdots+\underline{\alpha_{n}} \boldsymbol{u}_{n}
$$

and

$$
\boldsymbol{v}=\beta_{1} \boldsymbol{v}_{1}+\cdots+\beta_{m} \boldsymbol{v}_{m}
$$

Then f can always be represented as a matrix that obtains the β s from the α s:

$$
\begin{gathered}
\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right) \\
\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right)=\underbrace{\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{m}
\end{array}\right) .} .
\end{gathered}
$$

Example: The ‘Frequency Shift’ Matrix
Assume both \boldsymbol{u} and \mathbf{v} are linear combination of sounds of different frequencies:

(analogously for \boldsymbol{v}, but with $\beta \mathrm{s}$). What matrix realizes a 'frequency doubling' of a signal represented this way?

Matrices in the 'Real World'

What are some examples of matrices in applications?
Demo: Matrices for Geometry Transformation
Demo: Matrices for Image Blurring In-class activity: Computational Linear Algebra

Outline


```
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications
Approximate Undo: SVD and
Least Squares
SVD: Applications
    Solving Funny-Shaped Linear
    Systems
    Data Fitting
    Norms and Condition
    Numbers
    Low-Rank Approximation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D
```


Graphs as Matrices

How could this (directed) graph be written as a matrix?

