$$
\begin{aligned}
k_{\text {ahs }} & =\max _{x \in[0,1]} \frac{\text { absolute esrur of ondput }}{\text { absoluth esror in inpert }} \\
& =\max _{x \in[0,1]} \frac{|f(x+h)-f(x)|}{|h|} \\
& \approx \max _{x \in[0,7] \quad\left|f^{\prime}(x)\right|}
\end{aligned}
$$

Modelling the World with Matrices

Predicting Movie Popularity

$$
\begin{aligned}
& Y=[]=A \cdot\left[x^{(1)} x^{(n)} \ldots x^{(n)}\right] \\
& Y=A \cdot X \quad \text { Part ligiven } A_{1} X \\
& y_{i}=\sum_{j=1}^{n} Y_{i j} \quad P_{\text {art }} \text { zi g.ven } A_{1}, Y \\
& A_{1 j}=\text {; jth athinte of the:th move } \\
& X_{j b}=\text { preferme of frisht th w.ik } \\
& \text { reaput ho -ithimh } j \\
& \text { la. solve }
\end{aligned}
$$

Outline


```
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications
Approximate Undo: SVD and
Least Squares
SVD: Applications
    Solving Funny-Shaped Linear
    Systems
    Data Fitting
    Norms and Condition
    Numbers
    Low-Rank Approximation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D
```


Graphs as Matrices

How could this (directed) graph be written as a matrix?

$$
A=\operatorname{lin}^{\boldsymbol{j} \cdot \cos ^{1}}\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right]^{\top} A_{j i}=1 \text { if } \exists(i, j) \in E
$$

Matrices for Graph Traversal: Technicalities
What is the general rule for turning a graph into a matrix?
$A_{j i}=1$ if there :s an edge from: his

What does the matrix for an undirected graph look like?
symmetric

How could we turn a weighted graph (i.e. one where the edges have weights-maybe 'pipe widths') into a matrix?

$$
A_{j i} \text { : the wig. of of ely }: \rightarrow j
$$

Graph Matrices and Matrix-Vector Multiplication

If we multiply a graph matrix by the i th unit vector, what happens?

$A\left(\begin{array}{l}1 \\ \vdots \\ \vdots\end{array}\right)=?=\left(\begin{array}{l}1 \\ \vdots \\ 1\end{array}\right)$

Demo: Matrices for Graph Traversal

Outline


```
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications
Approximate Undo: SVD and
Least Squares
SVD: Applications
    Solving Funny-Shaped Linear
    Systems
    Data Fitting
    Norms and Condition
    Numbers
    Low-Rank Approximation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D
```


Storing Sparse Matrices

Some types of matrices (including graph matrices) contain many zeros.
Storing all those zero entries is wasteful. How can we store them so that we avoid storing tons of zeros?

Storing Sparse Matrices Using Arrays

How can we store a sparse matrix using just arrays? For example:

$$
\left(\begin{array}{cccc}
0 & 2 & 0 & 3 \\
1 & 4 & & \\
& & 5 & \\
6 & & & 7
\end{array}\right)
$$

