

Norms

What's a norm? 1121 20 x e h h Define norm. · ||x||=0 > x=0 • $||_{\alpha \times ||} = ||_{\alpha} ||_{\chi ||}$ $\|\mathbf{x}_{\mathbf{x}}^{\dagger}\| \leq \|\mathbf{x}_{\mathbf{x}}^{\dagger}\| + \|\mathbf{y}_{\mathbf{x}}^{\dagger}\|$ I triangle inequality

Examples of Norms

Demo: Vector norms

Norms and Errors

If we're computing a vector result, the error is a vector. That's not a very useful answer to 'how big is the error'. What can we do?

Absolute and Relative Error

What are the absolute and relative errors in approximating the location of Siebel center (40.114,-88.224) as (40,-88) using the 2-norm?

Demo: Calculate geographic distances using tripstance.com

Matrix Norms

What norms would we apply to matrices?

$$\frac{\|A\|_{2}}{\sum_{\substack{x \in \mathbb{N}^{n} \\ x \neq 0}}} = \max \|A \frac{\|A \frac{x}{\|x\|}}{\|x\|}$$

Demo: Matrix norms **In-class activity:** Matrix norms

Properties of Matrix Norms

Matrix norms inherit the vector norm properties:

- 1. $||A|| > 0 \Leftrightarrow A \neq \mathbf{0}.$
- 2. $\|\gamma A\| = |\gamma| \|A\|$ for all scalars γ .
- 3. Obeys triangle inequality $||A + B|| \leq ||A|| + ||B||$

But also some more properties that stem from our definition: