$$
\begin{aligned}
& \frac{\text { Overview }}{- \text { Nom }} \\
& \text { - Nom } \\
& \text { c) vector } \\
& c \text { mahix } \\
& \text { cs conultionit } \\
& \rightarrow \text { guts of In. } \\
& \text { solve) }
\end{aligned}
$$

Matrix Norms
What norms would we apply to matrices?

$$
\begin{aligned}
& \|A\|_{F}=\sqrt{\sum_{i, j}\left|A_{i, j}\right|^{2}} \\
& \text { "Frobenins" } \\
& C^{\|A\|}=\max _{x \rightarrow 0} \frac{\left\|A_{x}\right\|}{\left\|_{x}\right\|}=\max _{\| \| \|=1}\left\|A A_{x}\right\| \\
& \text { conerepondi, induced" from a vector }
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ll}
2 & \\
& 1
\end{array}\right)\binom{x}{y}=\binom{2 x}{y} \\
& \left\|\|_{7}^{7}\right. \\
& \max _{(x, y)+(-(0))}^{4 x^{2}+y^{7}} \sqrt{x^{2}+y^{2}} \\
& =\max _{x^{2}+y^{2}-1} \sqrt{x^{2}+y^{2}}=2
\end{aligned}
$$

$$
\begin{aligned}
& n x \|\left(\begin{array}{c}
A \\
2 \\
3 \\
4
\end{array}\right) \\
& \max _{\|x\|=1}\|A x\|\left(x_{1}\right)=\max _{x, \in\{-1}\left\|\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right) x_{1}\right\|_{1} \\
&=\left\|\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)\right\|_{1}=y
\end{aligned}
$$

$$
\begin{aligned}
& \|A\|_{1}=\max _{\|\vec{x}\|_{i} \mid} \mid \underline{2 x+3 y+\left.4 z\right|^{\leftarrow}} \\
& |x| \dot{x}|y|+|z|=1=4 \\
& 001
\end{aligned}
$$

Demo: Matrix norms

 In-class activity: Matrix normsProperties of Matrix Norms
Matrix norms inherit the vector norm properties:

1. $\|A\|>0 \Leftrightarrow A \neq \mathbf{0}$.
$\longrightarrow\|\gamma A\|=|\gamma|\|A\|$ for all scalars γ.
2. Obeys triangle inequality $\|A+B\| \leqslant\|A\|+\|B\|$

But also some more propert es that stem from our definition:

$$
\begin{aligned}
& \|A \vec{x}\| \leq\|A\|\|\vec{x}\| \\
& \|A \times\| \leq\|A\|\|x\| \\
& \begin{array}{c}
\quad \text { submultiplicahivity }
\end{array}
\end{aligned}
$$

Example: Orthogonal Matrices

$$
\begin{aligned}
& \|Q\|_{2}=\max _{\|\vec{x}\|_{2}=1}\|Q \vec{x}\|_{2} \\
& =\operatorname{mox}_{\|\vec{x}\|_{l^{-1}}} \sqrt{(Q \vec{x}) \cdot Q_{x}^{5}} \\
& =\max _{\|x\|_{z^{-1}}} \sqrt{x^{\top} \underbrace{T}_{T} Q^{\top} \vec{x}} \\
& \vec{x} \cdot \vec{y}=x^{\sigma} y=\max _{\|x\|_{2}=1} \sqrt{\dot{x}^{+}+\vec{x}}=\operatorname{mion}_{\|\vec{n}\|=1}\|\vec{x}\|_{n}
\end{aligned}
$$

Conditioning

$$
\begin{aligned}
\text { cond } & =\frac{\|\Delta x\|}{\left\|x_{0}\right\|} / \frac{\|\Delta s\|}{\left\|s_{0}\right\|} \\
& =\frac{\|\Delta x\|}{\| x_{0} D} \cdot \frac{\left\|b_{0}\right\|}{\|\Delta b\|} \leftarrow \\
& =\frac{\left\|A^{-1} \Delta b\right\| \cdot\left\|A x_{0}\right\|}{\left\|x_{0}\right\|\|\Delta b\|} \\
& (\Sigma) \frac{\left\|A^{-1}\right\| \Delta \Delta t h \cdot\|A\|\left\|x_{0}\right\|}{\left\|x_{0}\right\|}\|\Delta t\|
\end{aligned}
$$

$$
\begin{aligned}
&=\|A\|\left\|A^{-1}\right\| \geq 1 \\
& 1-\|t\|=\left\|A A^{-1}\right\| \leq\|A\|\left\|A^{-1}\right\|
\end{aligned}
$$

with sone extra work:
con show

$$
\operatorname{show} \operatorname{cond} \Theta\|A\|\left\|A^{-1}\right\|
$$

Demo: Condition number visualized
Demo: Conditioning of 2×2 Matrices

$$
\begin{gathered}
(73 y)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=|2 x+3 y+4 z| \\
\max \frac{\|A x\|_{1}}{\|x\|_{1}}
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{cond}(A \stackrel{\sim}{y}=b)=\|A\| \mid A^{-1} \| \\
& \operatorname{cond}(A \widetilde{x=b}) \\
& \operatorname{cond}\left(A^{-1} \overparen{b=x}\right)= \\
& \left|\left|A^{-1-1}\right|\right| \mid D^{-1} \| \\
& |A|\left\|A^{-1}\right\|
\end{aligned}
$$

|hel exr oulput /

$$
\begin{aligned}
& \leqslant \text { cond. | } \text { ré }^{\prime} \text { in err. } \text { in ingut } \mid \\
& \operatorname{cond}\left(A \cdot x^{\circ}=b\right)=\|A\| \cdot\left\|A^{-1}\right\| \\
& A x=b \Leftrightarrow A^{-1} b^{\circ}=\lambda \\
& \operatorname{cond}\left(A^{-1}+x^{2}\right)
\end{aligned}
$$

More Properties of the Condition Number

What is $\operatorname{cond}\left(A^{-1}\right) ?$

What is the condition number of applying the matrix-vector multiplication $A \boldsymbol{x}=\boldsymbol{b}$? (I.e. now \boldsymbol{x} is the input and \boldsymbol{b} is the output)

Matrices with Great Conditioning (Part 1)

Give an example of a matrix that is very well-conditioned. (I.e. has a condition-number that's good for computation.)

What is the best possible condition number of a matrix?

