$$
\begin{aligned}
& \text { Matrix Conditioning } \\
& A \in R^{n \times n} \\
& k(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2} \\
& A x=b
\end{aligned}
$$

$\begin{aligned} & \text { Solving } \text { for } x \text { hes condition number } \\ & k(A)\end{aligned}$

Multiplying x by A has condition number $K(A)$

$$
r_{2}(A)=k\left(A^{-1}\right)=\|A\|_{2} \cdot\left\|A^{-1}\right\|_{2}
$$

The same pablum as solung for b in $A^{-1} b=x$

More Properties of the Condition Number

What is $\operatorname{cond}\left(A^{-1}\right) ?$

$$
k\left(A^{-1}\right)=\left\|A^{-1}\right\|\|A\|=k(A)
$$

What is the condition number of applying the matrix-vector multiplication $A \boldsymbol{x}=\boldsymbol{b}$? (I.e. now \boldsymbol{x} is the input and \boldsymbol{b} is the output)
$r(A)$

$$
\begin{aligned}
& \text { Conditiuning: mex rel ear in ondp-1 } \\
& \text { enoret ear in inpu1 }
\end{aligned}
$$

Matrices with Great Conditioning (Part 1)
Give an example of a matrix that is very well-conditioned. (I.e. has a condition-number that's good for computation.) What is the best possible condition number of a matrix?

$$
\begin{array}{l|l}
r(I)=1 \\
K\left(\left[\begin{array}{ll}
3 & 7 \\
& 3
\end{array}\right]\right)=1 & K(Q) \\
& =\|Q\|_{2}\left\|G^{-1}\right\|_{2} \\
\text { Or the gonad matrix } Q & =1 \cdot\left\|Q^{\top}\right\|_{2} \\
Q^{\top} Q=I \Rightarrow Q^{\top}=Q^{-1} & =1.1 \sim 1 \\
\|Q\|_{2}=\sqrt{\left\langle\times G^{\top}, Q \times\right\rangle}=\sqrt{\langle x\rangle}=1
\end{array}
$$

$$
\begin{aligned}
& \left\|A \cdot A^{-1}\right\|=1 \\
& \left\|A \cdot A^{-1}\right\| \leq\|A\| \cdot\left\|A^{-1}\right\| \\
& \|X \cdot Y\| \leq\|x\| \cdot\|Y\| \\
& K(A)=\|A\| \cdot\left\|A^{-1}\right\| \geq 1
\end{aligned}
$$

for any p-noom

Matrices with Great Conditioning (Part 2)

What is the 2-norm condition number of an orthogonal matrix A ?

$$
\|A\|_{2}: 1
$$

In-class activity: Matrix Conditioning

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo
Error, Accuracy and Convergence Floating Point
Modeling the World with Arrays The World in a Vector What can Matrices Do?

Graphs

Sparsity
Norms and Errors
The 'Undo' Button for Linear Operations: LU Repeating Linear Operations: Eigenvalues and Steady States Eigenvalues: Applications

Approximate Undo: SVD and
Least Squares
SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition
Numbers
Low-Rank Approximation
Interpolation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D
Optimization in n Dimensions

Solving Systems of Equations
Want methods/algorithms to solve linear systems. Starting small, a kind of system that's easy to solve has a ... matrix.

$$
\begin{aligned}
& x_{2}=\frac{b_{2}}{a_{22}} \\
& a_{11} x_{1}=h_{1}-a_{21} \cdot\left(\frac{b_{2}}{a_{22}}\right)
\end{aligned}
$$

Triangular Matrices
Solve

$$
\begin{aligned}
& \left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & \left(a_{4}\right. \\
& a_{22} & a_{23} & a_{24} \\
& & a_{33} & a_{34}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
\mathbf{a}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right) . \\
& \mathbf{x}_{4}=b_{4} / a_{44} \\
& \left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
& a_{22} & a_{13} \\
& & a_{33}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
\lambda_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \cdot a_{14} \cdot x_{4} \\
b_{2} \cdot a_{24} \times x_{4} \\
b_{3}-a_{34} \cdot x_{4}
\end{array}\right)
\end{aligned}
$$

Demo: Back-substitution
In-class activity: Forward-substitutign

General Matrices
What about non-triangular matrices?
Gaussian Elimination =Lh

Given $n \times n$ matrix A, obtain lower triangular matrix L and upper triangular matrix U such that $A=L U$.

Is there some redundancy in this representation?

$$
\begin{aligned}
& n(n+1) / 2=\sum_{i=1}^{n} 1=\frac{n}{2} \cdot(n+1) \\
& 1+2+3+4+5+6=3-7 \left\lvert\, \begin{array}{l}
\text { diaguna of } L_{i=1} \\
\text { numis }
\end{array}\right.
\end{aligned}
$$

Using LU Decomposition to Solve Linear Systems
Given $A=L U$, how do we solve $A \boldsymbol{x}=\boldsymbol{b}$?

$$
L \underbrace{L-u \cdot x}_{y}=b
$$

$L \cdot y=b \notin$ solve by fud. subs. $u \cdot x=y \lessdot$ solve tor x by bund.

$$
x=U^{-1} L^{-1} b
$$

2-by-2 LU Factorization (Gaussian Elimination)
Lets consider an example for $n=2$.

$$
\begin{gathered}
{\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
l_{21} & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
u_{11} & u_{12} \\
0 & u_{22}
\end{array}\right]} \\
{\left[\begin{array}{ll}
a_{11} & a_{12}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \cdot\left[\begin{array}{ll}
u_{11} & u_{12} \\
0 & u_{22}
\end{array}\right]} \\
=\left[\begin{array}{ll}
u_{11} & u_{12}
\end{array}\right] \\
{\left[\begin{array}{l}
a_{11} \\
a_{21}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
l_{21} & 1
\end{array}\right] \cdot\left[\begin{array}{l}
u_{11} \\
0
\end{array}\right]=\left[\begin{array}{l}
u_{11} \\
l_{21} u_{11}
\end{array}\right]}
\end{gathered}
$$

$$
\left.\begin{array}{rl}
a_{21} & =l_{21}, n_{11} \Rightarrow \\
& =a_{21} \cdot u_{11}^{-1} \\
a_{22}=\left[\begin{array}{ll}
l_{21} & 1
\end{array}\right] \cdot \underbrace{u_{12}}_{u_{12}}
\end{array}\right]=\underbrace{u_{21}}_{\text {schur complument }}
$$

General LU Factorization (Gaussian Elimination)

$$
A=\left[\begin{array}{ll}
a_{11} & \mathbf{a}_{12} \\
\mathbf{a}_{\mathbf{2 1}} & A_{22}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
\mathbf{l}_{\mathbf{2 1}} & L_{22}
\end{array}\right] \cdot\left[\begin{array}{cc}
u_{11} & \mathbf{u}_{12} \\
0 & U_{22}
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
10 & {[A, 0]}
\end{array}\right]
$$

