| Ovenien | Examlet 4 |
| :--- | :--- | :--- |
| -L4 | Fisalsn |
| $0)$ | 700 |

General LU Factorization (Gaussian Elimination)

$$
\begin{aligned}
& l_{21}=\overrightarrow{a_{21}} / u_{11} \\
& \text { assuming } u_{n} \neq 0 . \\
& A_{22}=l_{21} \vec{l}_{12}^{\sigma}+l_{22} u_{22} \\
& A_{22}-\vec{l}_{21} u_{12}^{\sigma}-l_{22} u_{22} \\
& l_{i}
\end{aligned}
$$

Demo: Gaussian Elimination

LU: Failure Cases?
Is LU/ Gaussian Elimination bulletproof?
No, might divide by zero
What can be done to get something like an LU factorization?

Partial Pivoting Example
Lets try to get an pivoted LU factorization of the matrix

$$
\begin{gathered}
A=\left(\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right) . \\
\left(\begin{array}{ll}
u_{11} & u_{12} \\
0 & u_{12} \\
l_{21} & 1
\end{array}\right) \quad \begin{array}{l}
u_{11}=0 \\
0
\end{array} 1 \\
2
\end{gathered} 1 \begin{aligned}
& u_{12}=1 \\
& l_{21} \cdot u_{N}+1.0=2 \\
& 0
\end{aligned}
$$

Permutation Matrices
How do we capture 'row swaps' in a factorization? $u_{i i} \in t_{\text {e }}$
What does t

1. Swap a with a ne first entry to the top
2. Perform one step of L n asusual
3. Repeal

Computational Cost

What is the computational cost of multiplying two $n \times n$ matrices?

What is the computational cost of carrying out LU factorization on an $n \times n$ matrix?

