

$$
\begin{gathered}
\left|\lambda_{1}\right| \nu\left|x_{2}\right| \cdots \\
x=\alpha_{1} x_{1}+\alpha_{2}+x_{2}+\cdots 1 \alpha_{n} x_{2} \\
\frac{\lambda^{1000} x}{\lambda_{1}^{1000}}=\alpha_{1} x_{1} \alpha_{1} \frac{\lambda_{2}^{1000}}{\lambda_{1}^{1000}}+\alpha_{2} \lambda_{n}^{1000} \lambda_{1}^{1000} x
\end{gathered}
$$

$$
\begin{aligned}
& \text { Di gonalizability } \\
& x=\left(\begin{array}{ccc}
1 & & 1 \\
x_{1} & \ldots & x_{n} \\
1 & & 1
\end{array}\right) \\
& A \vec{x}_{i}=\lambda_{i} \vec{x}_{i} \\
& x_{i}^{3} \neq 0 \\
& \begin{array}{rrr}
A X & =X D & \mid x^{-1} \cdot D \\
X^{-1} A X & =D & \lambda^{\lambda_{1}} . \\
\lambda_{1}
\end{array}
\end{aligned}
$$

Are all Matrices Diagonalizable?
Give characteristic polynomial, eigenvalues, eigenvectors of
(0) (1) \in hot Aingnatizal

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{x}{y}=\binom{x}{y} \leftarrow \\
& 1 x+1 y=y \quad \Rightarrow y=0 \\
& \left(\begin{array}{l}
0 x+1 y=y \\
\hline y=y
\end{array}\binom{x}{y}=\binom{?}{0}\right.
\end{aligned}
$$

$$
\binom{1}{0}=\alpha\binom{1}{0}
$$

Power Iteration

We can use linear-independence to find the eigenvector with the largest eigenvalue. Consider the eigenvalues of A^{1000}.

Power Iteration: Issues?
What could go wrong with Power Iteration?

- Overflow (nu-nommiticed)
$-\left|\lambda_{1}\right|=\left|\lambda_{2}\right|$
- Starring vector has no comp. in \vec{x}_{1}. not an isshedue to roundry

What about Eigenvalues?
Power Iteration generates eigenvectors. What if we would like to know eigenvalues?

$$
\begin{aligned}
& A_{x}=\left(\begin{array}{l}
i \\
\vdots \\
\lambda_{x} \\
\lambda=1
\end{array}\right)
\end{aligned}
$$

In prinimple: $A_{\vec{x}} / \vec{x}$

$$
\begin{aligned}
& \frac{\vec{x} \cdot A_{\vec{x}}}{\frac{\vec{x} \cdot \vec{x}}{\vec{x}}}=\text { Rayleigl quilind } \\
& \frac{\vec{x} \cdot \lambda \vec{x}}{\vec{x} \cdot \vec{x}}=\lambda
\end{aligned}
$$

Convergence of Power Iteration

What can you say about the convergence of the power method?
Say $\boldsymbol{v}_{1}^{(k)}$ is the k th estimate of the eigenvector \boldsymbol{x}_{1}, and

$$
e_{k}=\left\|\boldsymbol{x}_{1}-\boldsymbol{v}_{1}^{(k)}\right\| .
$$

$$
\begin{aligned}
& \left\|\left.e_{k}|\approx| \frac{\lambda_{1}}{\lambda_{1}} \right\rvert\,\right\| e_{k-1} \| \\
& \left|\lambda_{1}\right|>\left|\lambda_{1}\right|
\end{aligned}
$$

Transforming Eigenvalue Problems
Suppose we know th changed matrices?

$$
A^{2} \vec{x}=A A \vec{x}-A \lambda \vec{x}=\lambda^{2} \vec{x}
$$

$$
\begin{aligned}
& (A-\sigma I) \vec{x}-A \vec{x}-\sigma \vec{x}-\lambda \vec{x}-\sigma \vec{x} \\
& \text { Inversion. } A \rightarrow A^{-1} \\
& -(\lambda-\theta)_{x}^{x} \\
& A^{-1} x=A^{-1} \frac{A_{x}}{\lambda} \\
& x=\frac{A x}{\lambda} \\
& =\frac{x}{\lambda}
\end{aligned}
$$

$A:$	-3	0.2	5
$(A-2 I):$	-5	-2.2	3
$A:$	-3	0.2	1000
$A+2 I:$	-1	2.2	1002
$\left(A+2 I \Gamma^{\prime}:\right.$	-1	$\frac{1}{2.2}$	$\frac{1}{1002}$

"Inverse Heration"
Inverse iteration + RQ asshiff; RQI

Inverse Iteration / Rayleigh Quotient Iteration
Describe inverse iteration.

$$
\vec{x}_{k+1}=(A-\sigma I)^{-1} \vec{x}_{k} \quad \vec{x}_{0}=?
$$

Describe Rayleigh Quotient Iteration.

$$
\begin{aligned}
\sigma & =\frac{\vec{x}^{\sigma} A \vec{\lambda}^{\overrightarrow{2}}}{\vec{x}^{\prime} \vec{x}} \\
\vec{x}_{k+1} & =(A-\sigma I)^{-1} \vec{x}_{k}
\end{aligned}
$$

Demo: Power Iteration and its Variants
In-class activity: Eigenvalue Iterations

$$
\begin{aligned}
& A_{x}=3 \quad\left(. \sin ^{\prime x}\right. \\
& \Leftrightarrow x=A^{-1} b \\
& x_{k+1}=(A-\text { - } I)^{-1} x_{k} \\
& \Leftrightarrow\left(A_{0} I I\right) x_{k}=x_{n}
\end{aligned}
$$

Computing Multiple Eigenvalues
All Power Iteration Methods compute one eigenvalue at a time. What if I want all eigenvalues?

$$
x_{k+1}=A_{x} \quad A\left(\begin{array}{ll}
1 & 1 \\
x & y \\
1
\end{array}\right)=\left(\begin{array}{cc}
A_{2} & A_{y} \\
1 & 0
\end{array}\right)
$$ othogonalize "orthogonal iterat' on"

$$
\begin{aligned}
& A \vec{x}=\lambda_{\vec{x}}
\end{aligned}
$$

Simultaneous Iteration
What happens if we carry out power iteration on multiple vectors simultaneously? \qquad

$$
\begin{aligned}
& A_{x}=\lambda \gamma \\
& y=5 x \\
& A_{y}=5 A_{y}=5 \lambda y \\
& =\lambda y
\end{aligned}
$$

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo
Error, Accuracy and Convergence Floating Point
Modeling the World with Arrays
The World in a Vector
What can Matrices Do?
Graphs
Sparsity
Norms and Errors
The 'Undo' Button for Linear
Operations: LU
Repeating Linear Operations: Eigenvalues and Steady States

Approximate Undo: SVD and Least Squares
SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition
Numbers
Low-Rank Approximation
Interpolation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D
Optimization in n Dimensions

Eigenvalues: Applications

