$$
\begin{aligned}
& \begin{array}{l}
\text { Ovenvien } \\
\text { - Eigar:app } \\
\text { - SVD }
\end{array} \\
& \text { - SVD } \\
& \text { - } \mathrm{cs}
\end{aligned}
$$

Markov chains and Eigenvalue Problems

Demo: Finding an equilibrium distribution using the power method

Understanding Time Behavior
Many important systems in nature are modeled by describing the time rate of change of something.
Vg. every bird will have 0.2 baby birds on average per year.

- But there are also foxes that eat birds. Every fox present decreases the bird population by 1 birds a year.
Meanwhile, each fox has 0.3 fox babies a year. And for each bird present, the population of foxes grows by 0.9 foxes.
Set this up as equations and see if eigenvalues can help us understand how these populations will evolve over time.

$$
\begin{aligned}
& \frac{\partial b}{\partial t} \frac{\Delta b}{\partial t}=0.2 b-1 f \\
& \frac{\partial f}{\partial f} \frac{\Delta f}{\Delta t}=0.9 b+0.3 f
\end{aligned}
$$

$$
\begin{gathered}
\vec{s}=\binom{b}{t} \\
\frac{\partial \vec{s}}{\partial t}=\left(\begin{array}{cc}
0.2 & -1 \\
0.9 & 0.3
\end{array}\right) \vec{s} \\
\vec{s}(t)=e^{\lambda t} \cdot \overrightarrow{s_{0}} \\
\lambda d^{\prime t} \vec{s}_{0}=A e^{\lambda t} \overrightarrow{s_{0}}
\end{gathered}
$$

Demo: Understanding the birds and the foxes with eigenvalues In-class activity: Eigenvalues 2

$$
e^{i t}=\cos (i t)+i \sin (i t)
$$

Outline

Python, Numpy, and Matplotlib

- Making Models with Polynomials Making Models with Monte Carlo
Error, Accuracy and Convergence Floating Point
Modeling the World with Arrays The World in a Vector What can Matrices Do? Graphs
Sparsity
Norms and Errors
The 'Undo' Button for Linear
Operations: LU
Repeating Linear Operations: Eigenvalues and Steady States Eigenvalues: Applications

Approximate Und : SVD and
Least Squares
SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition
Numbers
Low-Rank Approximation
Interpolation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D
Optimization in n Dimensions

Singular Value Decomposition
What is the Singular Value Decomposition ('SVD')?

$$
A=\begin{aligned}
& u \\
& \text { with. Nitgoned } \\
& V_{\text {ot h }}
\end{aligned}
$$

"full"

$$
\left.\begin{array}{l}
A_{i m} \times n \\
h \\
\xi_{i} m \times m \times h \\
V^{T}: n \times h
\end{array}\right] \text { foll }
$$

$$
\begin{array}{rl}
A x=b & A=U E v^{\top} \\
U E V^{\top} x=b & \mid U^{\top}, \\
\varepsilon v^{\top} x & =U^{\top} b \mid c^{\prime} \\
v^{\top} x & =\varepsilon^{-1} u^{\top} b \mid v \\
x & =V\left(\varepsilon^{-1}\left(v^{r} b\right)\right)
\end{array}
$$

Computing the SVD
How can I compute an SVD of a matrix A ?
$A^{\top} A$ \qquad symmetric, pos. sender.

$$
\begin{aligned}
& \left.A^{\sigma} A \vec{v}_{i}=\lambda_{1} \vec{v}_{i}\right) \\
& V=\left(\begin{array}{ccc}
1 & & 1 \\
\vec{v}_{1} \cdots & v_{n} \\
1 & & 1
\end{array}\right)
\end{aligned}
$$

$$
\Rightarrow e^{\prime} y_{v} \geqslant 0
$$

$$
\left.\begin{array}{l}
A^{+} A V \\
V_{n}
\end{array}\right)=V\left(\begin{array}{ll}
\lambda_{i} & \\
& \ddots \\
& \ddots \\
& \\
& \lambda_{1}
\end{array}\right)
$$

$$
\begin{aligned}
& \sigma_{i}=\sqrt{\lambda_{i}} \quad \text { ningular voluen } \\
& \varepsilon=\left(\begin{array}{lll}
\sqrt{\lambda}_{1} & & \\
& & \\
& & \ddots \sqrt{\lambda}_{2}
\end{array}\right)=\left(\begin{array}{lll}
\sigma_{1} & & \\
& & \\
& & \\
& & \sigma_{n}
\end{array}\right) \\
& A^{\top} A V=V \mathcal{C}^{2} \Leftrightarrow V^{-1} A^{\top} A V=C^{r}
\end{aligned}
$$

e'lyonvectors of a symm. malrix are orthi V orth.

$$
\begin{gathered}
A=U C V^{\top} \\
\cdot A V C^{-1}=U \\
I=U^{\top} U=\frac{C^{-1} V_{C^{-1} A^{+} A V}^{C^{2}}}{}=I
\end{gathered}
$$

Demo: Computing the SVD

How Expensive is it to Compute the SVD?

Demo: Relative Cost of Matrix Factorizations

‘Reduced’ SVD

‘Reduced’ SVD (II)

Is there a 'reduced' factorization for non-square matrices?

Outline

Approximate Undo: SVD and

Least Squares

SVD: Applications
Solving Funny-Shaped Linear Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation
Interpolation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D
Optimization in n Dimensions

Outline

```
Python, Numpy, and Matplotlib
Making Models with Polynomials
Making Models with Monte
Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays
    The World in a Vector
    What can Matrices Do?
    Graphs
    Sparsity
Norms and, Errors
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications
```

Approximate Undo: SVD and

Least Squares

SVD: Applications
Solving Funny-Shaped Linear Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation
Interpolation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D
Optimization in n Dimensions

Solve Square Linear Systems

Can the SVD $A=U \Sigma V^{T}$ be used to solve square linear systems? At what cost (once the SVD is known)?

