Overview	1
SVD	

Solve Square Linear Systems

Can the SVD $A = U\Sigma V^T$ be used to solve square linear systems? At what cost (once the SVD is known)?

$$A = b$$

$$v_{x} v^{\dagger} = b$$

$$x = v = v = v^{-1} v_{x} + b$$

$$u_{x} v^{\dagger} = v = b$$

Tall and Skinny Systems

Instead of Ax=b, ask for "Which & makes || A x - 5 || 2 as small as possible ?" (F) Ax B "residual" $||A_{x}-b||_{1}^{2} = ||r||_{1}^{2} = r^{2} + r^{2} + r^{2}$ (> "least squares"

Solving Least-Squares

 $A^{T}A = A^{T}b$ Chormul equations cond (AtA) & cond (A) cond (A) \approx cond (A)² (10°M

In-class activity: SVD and Least Squares

The Pseudoinverse: A Shortcut for Least Squares

How could the solution process for $Ax \cong b$ be with an SVD $A = U\Sigma V^T$ be 'packaged up'?

The Normal Equations

You may have learned the 'normal equations' $A^T A x = A^T b$ to solve $A x \cong b$. Why not use those?

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo

Error, Accuracy and Convergence Floating Point

Modeling the World with Arrays

The World in a Vector What can Matrices Do? Graphs

Sparsity

Norms and Errors The 'Undo' Button for Linear Operations: LU Repeating Linear Operations: Eigenvalues and Steady States Eigenvalues: Applications

Approximate Undo: SVD and Least Squares

SVD: Applications

Solving Funny-Shaped Linear Systems Data Fitting Norms and Condition Numbers Low-Rank Approximation

Fitting a Model to Data

Demo: Data Fitting using Least Squares

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo

Error, Accuracy and Convergence Floating Point

Modeling the World with Arrays

The World in a Vector What can Matrices Do? Graphs

Sparsity

Norms and Errors The 'Undo' Button for Linear Operations: LU Repeating Linear Operations: Eigenvalues and Steady States Eigenvalues: Applications

Approximate Undo: SVD and Least Squares

SVD: Applications

Solving Funny-Shaped Linear Systems Data Fitting Norms and Condition Numbers Low-Rank Approximation