

Recap: Interpolation

Starting point: Looking for a linear combination of functions φ_i to hit given data points (x_i,y_i) .

Interpolation becomes solving the linear system:

$$y_i = f(x_i) = \sum_{j=0}^{N_{\text{func}}} \alpha_j \underbrace{\varphi_j(x_i)}_{V_{ij}} \qquad \leftrightarrow \qquad V \boldsymbol{\alpha} = \boldsymbol{y}.$$

Want unique answer: Pick $N_{\rm func} = N \rightarrow V$ square.

V is called the (generalized) Vandermonde matrix.

Main lesson:

Rethinking Interpolation

We have so far always used monomials $(1, x, x^2, x^3, \ldots)$ and equispaced points for interpolation. It turns out that this has significant problems.

Demo: Monomial interpolation

Demo: Choice of Nodes for Polynomial Interpolation

Interpolation: Choosing Basis Function and Nodes

Both function basis and point set are under our control. What do we pick?

Ideas for basis functions:

- Monomials $1, x, x^2, x^3, x^4, \dots$
- ▶ Functions that make $V = I \rightarrow$ 'Lagrange basis'
- ightharpoonup Functions that make V triangular ightarrow 'Newton basis'
- Splines (piecewise polynomials)
- Orthogonal polynomials
- Sines and cosines
- 'Bumps' ('Radial Basis Functions')

Ideas for nodes:

- Equispaced
- 'Edge-Clustered' (so-called Chebyshev/Gauss/... nodes)

Better Conditioning: Orthogonal Polynomials

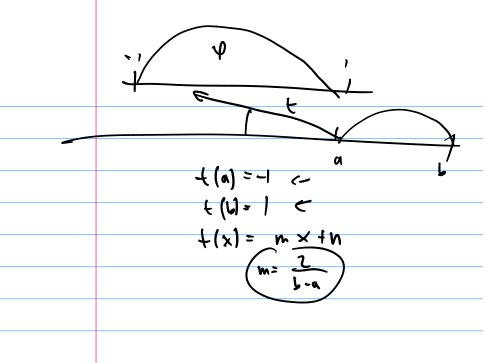
What caused monomials to have a terribly conditioned Vandermonde?

What's a way to make sure two vectors are not like that?

But polynomials are functions!

$$(f_1, g) = \int_{-1}^{1} f(x) g(x) dx$$

$$(p_1 g) = \sum_{i=1}^{n} p(x) g(x) = \frac{1}{\sqrt{1-x^2}} ax$$



Better Conditioning: Orthogonal Polynomials (II)

But how can I practically compute the Legendre polynomials?

Another Family of Orthogonal Polynomials Chebyshev

Three equivalent definitions:

▶ Result of Gram-Schmidt with weight $1/\sqrt{1-x^2}$

What is that weight?

$$T_k(x) = \cos(k\cos^{-1}(x))$$

$$T_k(x) = 2xT_k(x) - T_{k-1}(x)$$
 Chebyshev interpolation part I

What are good nodes to use with Chebyshev polynomials?

$$\nabla_{\mathbf{k}} = \cos(\mathbf{k} \cdot \cos^{-1}(\mathbf{x}; \mathbf{l}))$$

$$\mathbf{x}_{i} = \cos(\mathbf{k} \cdot \cos^{-1}(\mathbf{x}; \mathbf{l}))$$

Chebyshev Nodes

Might also consider zeros (instead of roots) of T_k :

$$x_i = \cos\left(\frac{2i+1}{2k}\pi\right) \quad (i=1,\ldots,k).$$

The Vandermonde for these (with T_k) can be applied in $O(N \log N)$ time, too.

It turns out that we were still looking for a good set of interpolation nodes.

We came up with the criterion that the nodes should bunch towards the ends. Do these do that?

Demo: Chebyshev interpolation part II

Calculus on Interpolants

Suppose we have an interpolant $\tilde{f}(x)$ with $f(x_i) = \tilde{f}(x_i)$ for $i=1,\ldots,n$:

$$\tilde{f}(x) = \alpha_1 \varphi_1(x) + \dots + \alpha_n \varphi_n(x)$$

How do we compute the derivative of \tilde{f} ?

Suppose we have function values at nodes $(x_i, f(x_i))$ for i = 1, ..., n for a function f. If we want $f'(x_i)$, what can we do?

About Differentiation Matrices

How could you find coefficients of the derivative?

Give a matrix that finds the second derivative.