

Calculus on Interpolants

Suppose we have an interpolant $\tilde{f}(x)$ with $\underline{f(x_i)} = \tilde{f}(x_i)$ for $i=1,\dots,n$:

$$\hat{f}(x) = \alpha_1 \varphi_1(x) + \dots + \alpha_n \varphi_n(x)$$

How do we compute the derivative of \tilde{f} ?

$$p'(x) \approx \widehat{p}'(x) = \alpha_1 p'_1(x) + \cdots + \alpha_k p'_k(x)$$

Suppose we have function values at nodes $(x_i, f(x_i))$ for $i = 1, \ldots, n$ for a function f. If we want $f'(x_i)$, what can we do?

$$\begin{array}{ccc}
(x_1) & (x_1) & (x_1) \\
(x_1) & (x_2) & (x_3) \\
(x_1) & (x_2) & (x_3) \\
(x_1) & (x_2) & (x_3) \\
(x_2) & (x_3) & (x_4) & (x_4) \\
(x_1) & (x_2) & (x_3) & (x_4) & (x_4) \\
(x_1) & (x_2) & (x_3) & (x_4) & (x_4) \\
(x_1) & (x_2) & (x_4) & (x_4) & (x_4) \\
(x_2) & (x_4) & (x_4) & (x_4) & (x_4) \\
(x_1) & (x_2) & (x_4) & (x_4) & (x_4) \\
(x_2) & (x_4) & (x_4) & (x_4) & (x_4) \\
(x_4) & (x_4) & (x_4) & (x_4) & (x_4) \\
(x_4) & (x_4) & (x_4) & (x_4) & (x_4) \\
(x_4) & (x_4) & (x_4) & (x_4) & (x_4) & (x_4) \\
(x_4) & (x_4) & (x_4) & (x_4) & (x_4) & (x_4) \\
(x_4) & (x_4) & (x_4) & (x_4) & (x_4) & (x_4) & (x_4) \\
(x_4) & (x_4) & (x_4) & (x_4) & (x_4) & (x_4) & (x_4) \\
(x_4) & (x_4) & (x_4) & (x_4) & (x_4) & (x_4) & (x_4) \\
(x_4) & (x_4) & (x_4) & (x_4) & (x_4) & (x_4) & (x_4) \\
(x_4) & (x_4) & (x_4) & (x_4) & (x_4) & (x_4) & (x_4) \\
(x_4) & (x_4) & (x_4) & (x_4) & (x_4) & (x_4) & (x_4) \\
(x_4) & (x_4) & (x_4) & (x_4) & (x_4) & (x_4) & (x_4) \\
(x_4) & (x_4) & (x_4) & (x_4) & (x_4) & (x_4) & (x_4) \\
(x_4) & (x_4) & (x_4) & (x_4) & (x_4) & (x_4) & (x_4) \\
(x_4) & (x_4$$

$$|f' - \hat{f}'| \leq C \cdot h^{n-1}$$

$$\rho'(x) \approx \frac{1}{\sqrt{p(x+\frac{1}{8})-p(x-\frac{1}{8})}}$$

$$= \frac{1}{\sqrt{p(x+\frac{1}{8})-p(x-\frac{1}{8})}}$$

About Differentiation Matrices

How could you find coefficients of the derivative in the original basis (φ_i) ?

Give a matrix that finds the second derivative.

Demo: Taking derivatives with Vandermonde matrices

Finite Difference Formulas

It is possible to use the process above to find 'canned' formulas for taking derivatives. Suppose we use three points equispaced points (x-h,x,x+h) for interpolation (i.e. a degree-2 polynomial).

- ▶ What is the resulting differentiation matrix?
- ▶ What does it tell us for the middle point?

Can we use a similar process to compute (approximate) integrals of a function f?

Example: Building a Quadrature Rule

Demo: Computing the Weights in Simpson's Rule

$$\int \int |x| dx = \alpha_1 \left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} \right) dx$$

$$= \alpha_1 \left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} \right) + \alpha_2 \int \frac{1}{x_3} dx$$

$$= \alpha_1 \int \frac{1}{x_1} dx - \alpha_3 \int \frac{1}{x_2} dx$$

$$\int \widehat{J}(x) = \widehat{J} \cdot \widehat{c} \cdot \widehat{d} \quad \widehat{J} = \int_{0}^{\infty} \frac{J}{J} \cdot \widehat{d} \cdot \widehat{$$

$$= \left(\frac{1}{4} \sqrt{-1} \right)$$

$$= \left(\frac{1}{4} \sqrt{-1} \right)$$

$$\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} dx = 1$$

$$\int_{0}^{1} \int_{0}^{1} dx = \frac{1}{2}$$

$$\int_{0}^{1} \int_{0}^{1} dx = \frac{1}{2}$$

Facts about Quadrature

What does Simpson's rule look like on [0, 1/2]?

What does Simpson's rule look like on [5, 6]?

How accurate is Simpson's rule with n points and functions?

Outline

The World in a Vector

Approximate Undo: SVD and
Least Squares
SVD: Applications
 Solving Funny-Shaped Linear
 Systems
 Data Fitting
 Norms and Condition
 Numbers
 Low-Rank Approximation

Iteration and Convergence

Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D

What is linear convergence? quadratic convergence?