Overvien

- Shithing Iscalig
- Ace quad
- Convergance
- Solving eq.

To find a quadrature rule on any interval $[a, b]$:

1. Cooling $p(x)=m x+n$ so that $\varphi(0)=a \quad \varphi(1)=b$
2. new nodosi $\tilde{x}_{i}=\rho\left(x_{i}\right)$

3, weights: $\tilde{w}_{1}=\varphi^{\prime}\left(x_{i}\right) w_{1}^{\prime}$

$$
=m \cdot w_{1}
$$

Example: Building a Quadrature Rule

Demo: Computing the Weights in Simpson's Rule
Suppose we know

$$
\begin{gathered}
f\left(x_{0}\right)=2 \\
x_{0}=y_{0} \quad f\left(x_{1}\right)=0 \quad f\left(x_{2}\right)=3 \\
x_{1}=\frac{1}{2}
\end{gathered} x_{2}=1
$$

How can we find an approximate integral?

Facts about Quadrature nod os s $0, \frac{1}{2}, 1$ wi $\frac{1}{6}, \frac{4}{6}, \frac{1}{6}$
What does Simpson's rule look like on $[0,1 / 2]$? $\frac{1}{2} f(0)+\frac{1}{2} \frac{1}{2} \rho\left(\frac{1}{4}\right)+\frac{1}{2} \rho\left(\frac{1}{2}\right)$ What does Simpson's rule look like on $[5,6]$?

Evror for interpolation

$$
\left|\rho(x)-\rho^{2}(\cdot)\right| \leq C \cdot h^{h+1}
$$

upoly deyree

$$
\begin{aligned}
\left|\int f-\int \tilde{f}\right| & \leqslant \int_{0}^{L}|\rho-\tilde{f}(x)| \\
& \leqslant c \cdot \int_{0}^{L} C \cdot h^{n+1}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\cdot h \int_{0}^{1} h^{h+1}\right. \\
& \leqslant C \cdot h^{h / 2} \int_{0}^{1} \cdot
\end{aligned}
$$

Why to the weights in Simpson's rale add up to 1 ?

$$
\begin{aligned}
& \frac{1}{6} \cdot \rho(0)+\underbrace{\frac{4}{6}}_{6} \rho\left(\frac{1}{1}\right)+\frac{1}{6}+f(1) \\
= & \frac{1}{6}+\frac{4}{6}+\frac{1}{6}
\end{aligned}
$$

$$
v^{\prime}\left(v^{-1}(\vec{\rho})\right)
$$

eval_deriv. (compule coeff($\vec{p})$)

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo
Error, Accuracy and Convergence Floating Point
Modeling the World with Arrays
The World in a Vector
What can Matrices Do?
Graphs
Sparsity
Norms and Errors
The 'Undo' Button for Linear
Operations: LU
Repeating Linear Operations: Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and
Least Squares
SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition
Numbers
Low-Rank Approximation
Interpolation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D
Optimization in n Dimensions

What is linear convergence? quadratic convergence?

$$
\begin{aligned}
& e_{k}=\left\|x_{k}-\hat{x}\right\| \\
& e_{k+1}=\frac{\lambda_{l}}{\frac{\lambda_{l}}{\lambda_{1}}} \cdot e_{k}
\end{aligned}
$$

"linear convergence"

$$
\frac{e_{k+1}}{c_{k}}-c \quad e_{k+1}=C \cdot e_{k}
$$

actually works if $c<1$

$$
\begin{aligned}
& \text { "quadratically convergati" } \\
&\left.\frac{e_{k+1}}{e_{k}}=c \quad \Leftrightarrow\right) e_{\alpha+1}=C \cdot e_{k}^{2} \\
& e_{1}=0.1 \quad C=0.9
\end{aligned}
$$

About Convergence Rates
Demo: Rates of Convergence

Characterize linear, quadratic convergence in terms of the 'number of accurate digits'.
linear : gater cosin, \& $\#$ of dig h
quark. doubles Hor digits

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo
Error, Accuracy and Convergence Floating Point
Modeling the World with Arrays
The World in a Vector
What can Matrices Do?
Graphs
Sparsity
Norms and Errors
The 'Undo' Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least Squares
SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition
Numbers
Low-Rank Approximation
Interpolation
Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization
in 1D
Optimization in n Dimensions

Solving Nonlinear Equations
What is the goal here?

$$
\begin{aligned}
& \bar{a}_{\hat{\imath}}+\bar{b} \cdot 2^{-57} \\
& 64 \hat{\imath} \\
& \left(a+b \tau^{25 \eta}\right) \cdot\left(c+d \cdot 7^{-57}\right)
\end{aligned}
$$

Bisection Method

Assume continuos function f has a zero on the interval $[a, b]$ and

$$
\operatorname{sign}(f(a))=-\operatorname{sign}(f(b))
$$

Perform binary search: check sign of $f((a+b) / 2)$ and define new search interval so that ends have opposite sign.
Demo: Bisection Method
What's the rate of convergence? What's the constant?

Newton's Method

Derive Newton's method.

