

To find a quadrahre rule
on any interval (a,b):

1. (ook up
$$P(x) = m \times f h$$
so that $P(0) = a P(1) = b$

2. new nodos: x' = P(x') 3, weights: ~ = P'(xi) wi

= m. W!

Example: Building a Quadrature Rule

Demo: Computing the Weights in Simpson's Rule

$$f(x_0) = 2$$
 $f(x_1) = 0$ $f(x_2) = 3$ $x_0 = 1$ $x_1 = \frac{1}{2}$ $x_2 = 1$

How can we find an approximate integral?

Outline

The World in a Vector

Approximate Undo: SVD and
Least Squares
SVD: Applications
 Solving Funny-Shaped Linear
 Systems
 Data Fitting
 Norms and Condition
 Numbers
 Low-Rank Approximation

Iteration and Convergence

Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D

What is linear convergence? quadratic convergence? $e_k = \| x_k - \hat{x} \|$ $e_{k+1} = \frac{\lambda_{l}}{\lambda_{l}} \cdot e_{k}$ h linear convergence GKHI = C. Gr actually works if C<1

About Convergence Rates

Demo: Rates of Convergence

Characterize linear, quadratic convergence in terms of the 'number of accurate digits'.

linear ; gains a const, # a f digits
quar: doubles # of digits

Outline

The World in a Vector Low-Rank Approximation Solving One Equation

Solving Nonlinear Equations

(a + 5 2 1) . (c + d . 7 - 37)

Bisection Method

Assume continuos function f has a zero on the interval $\left[a,b\right]$ and

$$\mathsf{sign}(f(a)) = -\mathsf{sign}(f(b)).$$

Perform binary search: check sign of f((a+b)/2) and define new search interval so that ends have opposite sign.

Demo: Bisection Method

What's the rate of convergence? What's the constant?

Newton's Method

Derive Newton's method.