Querview

- Equation in'vy
- Ophimizaltor

$$
\begin{aligned}
& f(x)=y \quad g(x)=0 \\
& g(x)=f(x)-y
\end{aligned}
$$

Applications:

$$
\begin{aligned}
\rightarrow \sqrt{y} & <x \Leftrightarrow \quad y=x^{2} \\
\cdot \frac{1}{b} & =x \quad \text { Nowt on's ind hod } \\
& \Leftrightarrow 5 x-1=0
\end{aligned}
$$

$$
f\left(\begin{array}{c}
1 \downarrow \\
\rho \\
v
\end{array}, \theta\right)=\left(\begin{array}{c}
\operatorname{dis}, \\
\vdots \\
\vdots \\
d_{i} l_{n}
\end{array}\right)
$$

Grash

$$
\mathcal{F}\binom{\text { joint anglel }}{\text { joint anglet }}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

Solving Nonlinear Equations
What is the goal here?

$$
e_{c}^{e_{k+1}=C \cdot e_{k} \mid e_{k}=b_{k}^{\prime} a_{k}}
$$

Bisection Method

Assume continuos function f has a zero on the interval $[a, b]$ and

$$
\operatorname{sign}(f(a))=-\operatorname{sign}(f(b))
$$

Perform binary search: check sign of $f((a+b) / 2)$ and define new search interval so that ends have opposite sign.
Demo: Bisection Method
What's the rate of convergence? What's the constant?

Newton's Method

$$
\begin{aligned}
& f(x)=0 \\
& \tilde{f}\left(x_{k}+h\right)=f\left(x_{k}\right)+h \cdot f^{\prime}\left(x_{k}\right) \\
& h \cdot f^{\prime}\left(x_{k}\right)=\text { Derive Newton's method. } \\
& h=-\frac{f\left(x_{k}\right)}{f\left(x_{k}\right)} \\
& f\left(x_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x_{k+1}=x_{k}+h=x_{k}-\frac{f\left(x_{k}\right)}{f^{1}\left(x_{k}\right)} \\
& e_{k y 1} \leq c \cdot e_{k}^{2}
\end{aligned}
$$

Demo: Newton's method
Demo: Convergence of Newton's Method

What are some drawbacks of Newton?

Secant Method

What would Newton without the use of the derivative look like?

Demo: Secant Method

In-class activity: Nonlinear equations in 1D

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo
Error, Accuracy and Convergence Floating Point
Modeling the World with Arrays
The World in a Vector
What can Matrices Do?
Graphs
Sparsity
Norms and Errors
The 'Undo' Button for Linear
Operations: LU
Repeating Linear Operations: Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least Squares
SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition
Numbers
Low-Rank Approximation
Interpolation
Iteration and Convergence
Solving One Equation

Solving Many Equations

Finding the Best: Optimization
in 1D
Optimization in n Dimensions

