Overview
nd solve opt

$$
\begin{aligned}
& 10 \\
& n
\end{aligned}
$$

$$
V \underline{L}=\vec{\rho} \quad\left(\begin{array}{r}
\tilde{f}(x)=\alpha_{0} p_{0}(x)+\cdots+\alpha_{n+} p_{n}(\lambda \\
\left.\int \hat{f}(x) d x=\alpha_{0}\left(\int p_{p}\right)+\cdots p \alpha_{n-1}\right) \\
p_{n-1}
\end{array}\right.
$$

$$
\begin{aligned}
& \vec{I}=\left(\begin{array}{c}
S \varphi_{0} \\
\vdots \\
S \varphi_{h-1}
\end{array}\right) \\
& I^{\top}\left(V^{-1} J\right) \in h^{h} / h^{3} \\
&=\left(I^{\top} V^{-1} / \vec{\rho} \in h\right. \\
& \text { precompunte }+1+ \\
& \vec{\omega}
\end{aligned}
$$

Solving Nonlinear Equations

What is the goal here?

Demo: Three quadratic functions (click to visit)

Newton's method

What does Newt method pok like in n dimensions?

$$
\left.\begin{array}{l}
f\binom{a}{!}-(<0 \\
f\binom{b}{?}=(>0
\end{array}\right)
$$

$$
\stackrel{\rightharpoonup}{x}_{k+1}=\vec{x}_{k}+\vec{h}
$$

$$
\begin{aligned}
& \vec{f}\left(\vec{x}_{k}+\vec{h}\right)=\vec{f}\left(\stackrel{1}{x_{k}}\right)
\end{aligned}
$$

says "how much does P_{n}, change if h_{1}, changes

$$
\begin{gathered}
\overrightarrow{0}=\vec{f}\left(\vec{x}_{k}+\mathfrak{l}\right)=\vec{\rho}\left(\vec{x}_{k}\right)+J_{\rho}\left(\vec{x}_{k}\right) \cdot h \\
\vec{\rho}=\vec{f}\left(\vec{x}_{k}\right)+J_{\rho}\left(x_{k}\right) \cdot \vec{h} \\
\left.\partial_{f}^{-1}\left(x_{k}\right) \cdot f \vec{\rho}\left(\vec{x}_{k}\right)\right)=\vec{h} \\
\vec{x}_{k+1}=\vec{x}_{k}-f^{-1}\left(x_{k}\right)-f\left(x_{k}\right) \\
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{\rho^{\prime}\left(x_{k}\right)}
\end{gathered}
$$

Newton: Example
Set up Newton's method to find a root of

$$
\partial_{f}\binom{x}{y}=\left(\begin{array}{ll}
1 & 2 \\
2 x & 8 y
\end{array}\right)
$$

$$
\begin{aligned}
& J_{p}\left({ }^{\frac{1}{1}} \in|x| 10\right. \\
& \alpha_{p^{\prime}}=\underbrace{2}_{n \rightarrow 1000} \text { an }
\end{aligned}
$$

Secant in n dimensions?
What would the secant method look like in n dimensions?
If doesn'l.

$$
\left.\begin{array}{rl}
\qquad f\left(x_{k}\right) & f\left(x_{k y}\right)
\end{array}\right) \rightarrow 0(n)
$$

$$
\begin{aligned}
& f(x)=(x-15)(x-10)(x-5) \\
& g(x)=\frac{f(x)}{(x+15)}
\end{aligned}
$$

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays
The World in a Vector
What can Matrices Do?
Graphs
Sparsity
Norms and Errors
The 'Undo' Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications
Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation
Interpolation
Making Interpolation Work
Better
Calculus on Interpolants
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization in 1D

Optimization in n Dimensions

Optimization

Sufflcian cond: $f^{\prime \prime}(x)>0$
Nec ossary

Newton for 10 opt?

$$
x_{k+1}=x_{k}-\frac{f^{\prime}\left(x_{k}\right)}{f^{\prime \prime}\left(x_{k}\right)}
$$

still quadratically convergent.

"unimodal" $\frac{1}{3} \quad \frac{1}{3}$

Golden section search

Optimization: What could go wrong?
What are some potential problems in optimization?

- Iocai minimm

Optimization: What is a solution?

How can we tell that we have a (at least local) minimum? (Remember calculus!)

Newton's Method

Let's steal the idea from Newton's method for equation solving: Build a simple version of f and minimize that.

Demo: Newton's Method in 1D (click to visit) In-class activity: Optimization Methods

Golden Section Search

Would like a method like bisection, but for optimization. In general: No invariant that can be preserved.
Need extra assumption.

Demo: Golden Section Search Proportions (click to visit)

Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays
The World in a Vector
What can Matrices Do?
Graphs
Sparsity
Norms and Errors
The 'Undo' Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications
Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation
Interpolation
Making Interpolation Work
Better
Calculus on Interpolants
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization in
1D
Optimization in n Dimensions

Optimization in n dimensions: What is a solution?

How can we tell that we have a (at least local) minimum? (Remember calculus!)

Find $\operatorname{minf}(x, y)$

Steepest Descent

Given a scalar function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at a point \boldsymbol{x}, which way is down?

