Why polynomials?

$$
a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}
$$

- How do we write a general degree n polynomial?

$$
\sum_{i=0}^{n} a_{i} x^{i}=a_{0} x^{0}+a_{n} \lambda-x^{1} z^{2},
$$

- Why polynomials and not something else?

Reconstructing a Function From Derivatives

- If we know $f\left(x_{0}\right), f^{\prime}\left(x_{0}\right), f^{\prime \prime}\left(x_{0}\right)$, can we approximately reconstruct the function as a polynomial p ?

$$
\begin{aligned}
& p(x)=? ? ?+? ? ? x+? ? ? x^{2}+\cdots \\
& f(0), f^{\prime}(0) f^{\prime \prime}(0) \\
& p(x): a+b x+c \lambda^{2}+d x^{3}+\ldots \\
& p(0)=a \\
& p^{\prime}(x)=b+2 c \lambda+3 d \lambda \lambda^{2} \\
& r^{\prime}(0)=b \\
& r^{\prime \prime}(\lambda)=2 c+6 f \lambda+\ldots \\
& c=f^{\prime \prime}(0) / 2
\end{aligned}
$$

$$
\begin{aligned}
& g(x)=\sum_{i=0}^{\infty} \frac{g^{(i)}(0)}{i!} x^{!} \\
& g(\lambda)=f\left(x+\lambda_{0}\right)
\end{aligned}
$$

Demo: Polynomial Approximation with Derivatives (Part I)

$$
f(x)=\sum_{i=0}^{\infty} \frac{f^{(i)}\left(x_{0}\right)}{\vdots!}(x=0)
$$

Shifting the Expansion Center

- Can you do this at points other than the origin?

$$
g(x)=f\left(x+x_{0}\right)
$$

