Computing General Integrals using Monte Carlo

Lets consider integrating f(x, y) on domain $\Omega \subset [0, L]^2$ $G = \int \int_{\Omega} f(x,y) dx dy = \int_{\Omega}^{L} \int_{\Omega}^{L} f(x,y) \delta(x,y) dx dy,$ where $\delta(x,y) = 1$ if $(x,y) \in \Omega$ and $\delta(x,y) = 0$ if $(x,y) \notin \Omega$. $S(x,y) | P(x,y) = \frac{1}{51} S(x,y)$ Z distributed by P $G = |SU| \in EPED = |SU| \int (f(x,y)) p(x,y)$

Monte Carlo Methods: The Good and the Bad

Computers and Random Numbers

[from xkcd]

How can a computer make random numbers? USL an actual source sf can how men

Random Numbers: What do we want?

What properties can 'random numbers' have?

- Have a specific distribution (e.g. 'uniform'-each value in given interval is equally likely)
- Real-valued/integer-valued
- Repeatable (i.e. you may ask to exactly reproduce a sequence)
- Unpredictable
 - V1: 'I have no idea what it's going to do next.'
 - V2: No amount of engineering effort can get me the next number.
- Uncorrelated with later parts of the sequence (Weaker: Doesn't repeat after a short time)
- Usable on parallel computers

What's a Pseudorandom Number?

Actual randomness seems like a lot of work. How about 'pseudo-random numbers?'

Idea: Maintain some 'state'. Every time someone asks for a number:

```
random_number, new_state = f(state)
```

Satisfy:

- Distribution
- 'I have no idea what it's going to do next.'
- Repeatable (just save the state)
- Typically not easy to use on parallel computers

Demo: Playing around with Random Number Generators

Some Pseudorandom Number Generators

Lots of variants of this idea:

- ► LC: 'Linear congruential' generators
- MT: 'Mersenne twister'
- almost all randonumber generators you're likely to find are based on these-Python's random module, numpy.random, C's rand(), C's rand48().

Counter-Based Random Number Generation (CBRNG)

What's a CBRNG?

Idea: Cryptography has *way* stronger requirements than RNGs. *And* the output *must* 'look random'.

(Advanced Encryption Standard) AES algorithm: 128 encrypted bits = AES (128-bit plaintext, 128 bit key)

We can treat the encrypted bits as random: 128 random bits = AES (128-bit counter, arbitrary 128 bit key)

- Just use $1, 2, 3, 4, 5, \ldots$ as the counter.
- No quality requirements on counter or key to obtain high-quality random numbers
- Very easy to use on parallel computers
- Often accelerated by hardware, faster than the competition

Demo: Counter-Based Random Number Generation

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo

Error, Accuracy and Convergence

Floating Point

Modeling the World with Arrays

The World in a Vector What can Matrices Do? Graphs

Sparsity

Norms and Errors The 'Undo' Button for Linear Operations: LU

LU: Applications

Linear Algebra Applications

Low-Rank Approximation

Error in Numerical Methods

Every result we compute in Numerical Methods is inaccurate. What is our model of that error?

.

Suppose the true answer to a given problem is x_0 and the computed answer is \tilde{x} . What is the absolute error?

alsolute even =
$$[x_0 - \tilde{x}]$$

= $[\tilde{x} - \tilde{x}_0]$

Relative Error

Measuring Error

Why is $|\tilde{x}| - |x_0|$ a bad measure of the error?

$$|\tilde{x} - x_0| \neq |\tilde{x}| - |x_0|$$

If \widetilde{x} and x_0 are vectors, how do we measure the error?

$$\frac{11\overline{x}-x_{0}11}{11\overline{x}11},$$

Sources of Error

What are the main sources of error in numerical computation?

Digits and Rounding

Establish a relationship between 'accurate digits' and rounding error.

$$\overline{X} = 0.0034$$

 $X_0 = 0.0034271$
 $|\overline{X} - \overline{X}_0| = .0000271... \le |\overline{0}|^4$
 $|\overline{X} - \overline{X}_0| \le 10^{-2}$

absoliate 1x-x01 ≤ 10r-k if & has Kacwate digits and x = x 10 where x = ····· X = 123450.000 6=5 X = 123456.789 5=7 18-21 -10

Condition Numbers

Methods f take input x and produce output y = f(x). Input has (relative) error $|\Delta x| / |x|$. Output has (relative) error $|\Delta y| / |y|$. **Q:** Did the method make the relative error bigger? If so, by how much?

*n*th-Order Accuracy

Often, truncation error is controlled by a parameter h.

Examples:

- distance from expansion center in Taylor expansions
- length of the interval in interpolation

A numerical method is called 'nth-order accurate' if its truncation error ${\cal E}(h)$ obeys

 $E(h) = O(h^n).$

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo

Error, Accuracy and Convergence Floating Point

Modeling the World with Arrays

The World in a Vector What can Matrices Do? Graphs

Sparsity

Norms and Errors The 'Undo' Button for Linear Operations: LU

LU: Applications

Linear Algebra Applications

Low-Rank Approximation