Digits and Rounding
Establish a relationship between 'accurate digits' and rounding error.

$$
\begin{aligned}
& \pi=3.1415 \ldots \\
& \bar{\pi} \approx \underbrace{3.142}_{n=4} \\
& \text { relative error }=\frac{\pi-\pi}{\pi} \leq 5 \cdot 10^{-4} \\
& \leq 10^{-3}
\end{aligned}
$$

Condition Numbers

```
Methods \(f\) take input \(x\) and produce output \(y=f(x)\).
Input has (relative) error \(|\Delta x| /|x|\).
Output has (relative) error \(|\Delta y| /|y|\).
Q: Did the method make the relative error bigger? If so, by how much?
```

$$
\begin{aligned}
k & =\max _{x}\left(\frac{\text { relative change in } f(x)}{\text { rel.pertwhator to } x}\right) \\
& =\max _{x}\left(\frac{|f(x+\Delta x)-f(x)|}{|f(x)|} / \frac{|\Delta x|}{|x|}\right)
\end{aligned}
$$

chsolute conAdion number

$$
\begin{aligned}
& k_{a b s}=\max _{x}\left(\frac{|f(x+\Delta x)-f(x)|}{|\Delta x|}\right) \\
& =\max \left(\begin{array}{c}
\text { absolute change } \\
\text { of ontput } \\
\text { sine of pertontinen } \\
\text { so inpmit }
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& k(x)=\frac{|x||f(x)|}{|f(x)|} \\
& f(x)=a+b x+c x^{2}+\ldots+y \cdot x^{n}
\end{aligned}
$$

as $x \rightarrow \infty, f(x) \approx y x^{n}$

$$
K(x) \approx \frac{|x|\left|n y x^{n-1}\right|}{\left|y x^{n}\right|}=n
$$

n th-Order Accuracy

Often, truncation error is controlled by a parameter h.

Examples:

- distance from expansion center in Taylor expansions
- length of the interval in interpolation

A numerical method is called ' n th-order accurate' if its truncation error $E(h)$ obeys

$$
E(h)=O\left(h^{n}\right)
$$

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays
The World in a Vector
What can Matrices Do?
Graphs
Sparsity
Norms and Errors
The 'Undo' Button for Linear
Operations: LU
LU: Applications
Linear Algebra Applications Interpolation

Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications
Approximate Undo: SVD and
Least Squares
SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition
Numbers
Low-Rank Approximation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D

Wanted: Real Numbers... in a computer
Computers can represent integers, using bits:

$$
23=1 \cdot 2^{4}+0 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}=(10111)_{2}
$$

How would we represent fractions, e.g. 23.625?

$$
\begin{aligned}
& \begin{array}{l}
23.625=10111 . \underbrace{101} \\
\underbrace{1.2^{-1}}_{32}+0.2^{-2}+1.2^{-3} \\
10111.101 \quad \text { f.1.1-poin1 }
\end{array} \underbrace{\underbrace{}_{32}}_{32}
\end{aligned}
$$

Fixed-Point Numbers
Suppose we use units of 64 bits, with 32 bits for exponents $\geqslant 0$ and 32 bits for exponents <0. What numbers can we represent?

$$
\begin{aligned}
& 2^{31}+2^{30}+\ldots 2^{-32} \approx 2^{32}-2^{-32} \approx 10^{9} \\
& 2^{-32}
\end{aligned}
$$

How many 'digits' of relative accuracy (think relative rounding error) are available for the smallest vs. the largest number?

$$
\underbrace{\substack{9 \text { dermal } \\ 2^{31} 2^{30}} \frac{2^{-32}}{d_{0 j a}} \text { for } 2^{-32}}_{1 \text { accra de }}
$$

Floating Point numbers
Convert $13=(1101)_{2}$ into floating point representation
$1.2345, \times 10^{6}$
1.101×2^{3} signiffeond expownt

What pieces do you need to store an FP number?
significand-binery digits
b, $\cdots s_{n}$
exponent - magnitude

$$
\begin{aligned}
& e_{1} \cdots e_{k} \\
& n+t \approx \text { bits }
\end{aligned} s_{0} \cdot s_{1} s_{2} s_{3} \ldots s_{n} \cdot 2_{1}^{e_{1} \ldots e_{t}}
$$

$$
\begin{aligned}
& s_{0}=1 \quad s_{1} \ldots s_{n}=0 \\
& e_{1}, e_{2} \ldots e_{k}=1 \\
& 1.0 \cdot 2^{1 / \underbrace{1 / 1}_{F+1+1 / 1}=2^{2^{k}-1}} \\
& 18=10 \quad 2^{102 n-1}=2^{1023} \\
& \underbrace{1.01011}_{\text {significand }}
\end{aligned}
$$

$$
\begin{gathered}
1 . s_{0} s_{1} \ldots e_{n} \cdot 2^{e_{1} \ldots e_{t}} \\
=0.1 s_{0} \ldots s_{n} \cdot 2^{e_{1} \ldots e_{t}+1} \\
1071101 \cdot 11001 \\
\xrightarrow{L} 1.01110111001 \times 2^{6} \\
{ }_{1.101 .2}-4
\end{gathered}
$$

$$
\begin{aligned}
& \text { 64-hit } \\
& {\underset{i}{4} \underbrace{i}_{\text {sign bit }} \frac{13}{i \times p o u n d}}_{\hat{\uparrow}_{\text {signidical }}^{50} \theta}^{\substack{50}} \\
& \text { If expinent }=000000 \\
& \longrightarrow 2^{-2^{13}}
\end{aligned}
$$

roundodt arror hend maclime \mathcal{E} is smallut such epsilon that $\operatorname{fp}(1+\varepsilon) \neq f_{p}(1)$

$$
\begin{aligned}
& \text { exp-000 } \Rightarrow 2^{-4} \\
& 100 \Rightarrow 2^{0} \\
& 111 \Rightarrow 2^{3} \\
& A_{p}(1)=\bigcup_{\operatorname{sign}}^{0} \underbrace{100}_{\operatorname{an}} \underbrace{0 . . .0}_{5 . g .} \\
& \text { exp }=10 D \Rightarrow 2^{-4}
\end{aligned}
$$

$$
\begin{array}{rl}
s= & 1.01 \cdot 2^{2} \\
S_{1}^{11 S_{2}} \\
b & =1.10 \cdot 2^{2} \\
s_{1} \\
7 & =1.11 \\
8=1.00 \cdot 2^{3} & 9
\end{array}
$$

$$
\begin{aligned}
& \operatorname{Ap}(1)=\underbrace{0}_{\text {sigh }} \underbrace{000}_{\text {expurent }} \underbrace{00000}_{\text {signitiond }} \\
& f_{p}(1+\varepsilon)=000000001 \\
& f_{0}(e x p)=0100 \Rightarrow 2^{-4} \Rightarrow 2^{-111} \\
& \\
& =100 \Rightarrow 2^{0} \\
& \\
& =111 \Rightarrow 2^{3}
\end{aligned}
$$

In-class activity: Floating Point

