

Vectors

What's a vector?

Vectors in the 'Real World'

Demo: Images as Vectors **Demo:** Sound as Vectors **Demo:** Shapes as Vectors

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo

Error, Accuracy and Convergence Floating Point

Modeling the World with Arrays

The World in a Vector What can Matrices Do? Graphs Sparsity

Norms and Errors The 'Undo' Button for Linear Operations: LU

LU: Applications

Linear Algebra Applications

Low-Rank Approximation

Matrices

What does a matrix do?

It represents a *linear function* between two vector spaces $f: U \to V$ in terms of bases u_1, \ldots, u_n of U and v_1, \ldots, v_m of V. Let

$$\boldsymbol{u} = \alpha_1 \boldsymbol{u}_1 + \cdots + \alpha_n \boldsymbol{u}_n$$

and

$$\boldsymbol{v} = \beta_1 \boldsymbol{v}_1 + \dots + \beta_m \boldsymbol{v}_m.$$

Then f can *always* be represented as a matrix that obtains the β s from the α s:

$$\left(\begin{array}{ccc}a_{11}&\cdots&a_{1n}\\\vdots&\ddots&\vdots\\a_{m1}&\cdots&a_{mn}\end{array}\right)\left(\begin{array}{c}\alpha_1\\\vdots\\\alpha_n\end{array}\right)=\left(\begin{array}{c}\beta_1\\\vdots\\\beta_m\end{array}\right).$$

Example: The 'Frequency Shift' Matrix

Assume both u and v are linear combination of sounds of different frequencies:

 $\boldsymbol{u} = \alpha_1 \boldsymbol{u}_{110 \text{ Hz}} + \alpha_2 \boldsymbol{u}_{220 \text{ Hz}} + \dots + \alpha_4 \boldsymbol{u}_{880 \text{ Hz}}$

(analogously for v, but with β s). What matrix realizes a 'frequency doubling' of a signal represented this way?

Matrices in the 'Real World'

What are some examples of matrices in applications?

Demo: Matrices for Geometry Transformation **Demo:** Matrices for Image Blurring **In-class activity:** Computational Linear Algebra

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo

Error, Accuracy and Convergence Floating Point

Modeling the World with Arrays

The World in a Vector What can Matrices Do? Graphs Sparsity

Norms and Errors The 'Undo' Button for Linear Operations: LU

LU: Applications

Linear Algebra Applications

Low-Rank Approximation

Graphs as Matrices

