

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo

Error, Accuracy and Convergence Floating Point

Modeling the World with Arrays

The World in a Vector What can Matrices Do? Graphs

Sparsity

Norms and Errors

The 'Undo' Button for Linear Operations: LU

LU: Applications

Linear Algebra Applications

Low-Rank Approximation

Norms

Examples of Norms

Demo: Vector norms

Norms and Errors

If we're computing a vector result, the error is a vector. That's not a very useful answer to 'how big is the error'. What can we do?

Absolute and Relative Error

What are the absolute and relative errors in approximating the location of Siebel center (40.114,-88.224) as (40,-88) using the 2-norm?

$$\begin{aligned} c_{1}b_{1} & \left\| \begin{pmatrix} 40 & 114 \\ -81 & 274 \end{pmatrix} - \begin{pmatrix} 40 \\ 88 \end{pmatrix} \right\|_{2} = \left\| \begin{pmatrix} 114 \\ -224 \end{pmatrix} \right\|_{2} \\ & = \left(-114^{2} + .224^{2} \right)^{\frac{1}{2}} \end{aligned}$$

Demo: Calculate geographic distances using tripstance.com

Matrix Norms

What norms would we apply to matrices?

$$\| \operatorname{Vec}(A) \|_{2} = \left(\begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \right) \left\{ \begin{array}{c} \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \end{array} \right\} \left\{ \left\{ \begin{array}{c} \\ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \begin{array}{c} \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \begin{array}{c} \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \begin{array}{c} \\ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \begin{array}{c} \\ \end{array} \left\{ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \begin{array}{c} \\ \end{array} \left\{ \end{array} \right\} \left\{ \begin{array}{c} \\ \end{array} \left\{ \end{array} \right\} \left\{ \end{array} \left\{ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \end{array} \left\{ \end{array} \right\} \left\{ \end{array} \left\{ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \end{array} \left\{ \end{array} \right\} \left\{ \end{array} \left\{ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \end{array} \left\{ \end{array} \left\{ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \end{array} \left\{ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \end{array} \left\{ \end{array} \right\} \left\{ \end{array} \left\{ \end{array} \right\} \left\{ \end{array} \left\{ \end{array} \left\{ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \end{array} \left\{ \end{array} \left\{ \end{array} \right\} \left\{ \end{array} \left\{ \end{array} \left\{ \end{array} \right\} \left\{ \end{array} \left\{ \end{array} \right\} \left\{ \end{array} \left\{ \end{array} \right\} \left\{ \end{array} \left\{ \end{array} \left\{ \end{array} \right\} \left\{ \end{array} \left\{ \end{array} \right\} \left\{ \end{array} \left\{ \end{array} \left\{ \end{array} \right\}$$

Demo: Matrix norms In-class activity: Matrix norms

$$\begin{pmatrix} 3 & 0 \\ 4 & 4 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 3 & a \\ 4 & 4 & b \end{pmatrix}$$

$$\begin{pmatrix} 3 & a \\ 4 & 4 & b \end{pmatrix} \begin{pmatrix} 3 & a \\ 4 & 4 & b \end{pmatrix} \begin{pmatrix} 3 & a \\ 4 & 4 & b \end{pmatrix} \begin{pmatrix} 3 & a \\ 7 & 4 & b \end{pmatrix} \begin{pmatrix} 3 & a \\ 7 & 4 & b \end{pmatrix}$$

$$\begin{pmatrix} 1 & a \\ a \end{pmatrix} \begin{pmatrix} 1 & b \\ a \end{pmatrix}$$

.

Properties of Matrix Norms

Matrix norms inherit the vector norm properties:

- 1. $||A|| > 0 \Leftrightarrow A \neq \mathbf{0}.$
- 2. $\|\gamma A\| = |\gamma| \|A\|$ for all scalars γ .
- 3. Obeys triangle inequality $||A + B|| \leq ||A|| + ||B||$

But also some more properties that stem from our definition: