Matrix Norms

What norms would we apply to matrices?
$\operatorname{basis} u=\left(\begin{array}{lll}\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}\end{array}\right)$
hasis $V:\left(\begin{array}{lll}\vec{v}_{1} & \overrightarrow{v_{2}} & \vec{v}_{3}\end{array}\right)$

$$
\begin{aligned}
& \left(\begin{array}{l}
\mu_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right)=A\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right) \\
& x=\alpha_{1} v_{1}+\alpha_{2} u_{2}+\alpha_{3} u_{3} \\
& y=\beta_{1} v_{1}+\beta_{2} v_{2}+\beta_{3} v_{3}
\end{aligned}
$$

Allernative

$$
\begin{aligned}
& y=A x \quad f(x) \\
& y_{i}=\sum_{j} a_{i j} x_{j}
\end{aligned}
$$

Madrit-vector mald. with adyecency matrix A

$$
\begin{aligned}
& x=\left(\begin{array}{l}
6 \\
0 \\
0 \\
0
\end{array}\right) \\
& \sqrt{0}=0 \rightarrow 0<0<0
\end{aligned}
$$

Lap1acians matrix

$\left.\begin{array}{rrr}\text { adjecency midrici } & A \\ & \text { deyrus } & D\end{array} \right\rvert\, L=D-A$

$$
\begin{aligned}
& w=D v-A v \\
& w_{i}=\mathcal{D}_{v_{i}}-\sum_{j} A_{i j} v_{j} \\
& {\underset{\sim}{w}}_{w_{1}}=D_{v_{i}}^{0}-\sum_{j}^{0} A_{1, j} \psi_{j} \prod_{1} \text { if } j \text { iscn.i }
\end{aligned}
$$

$$
\text { if } L_{v}=0
$$

$$
\begin{align*}
& 3 v_{2}=v_{1}+v_{3}+v_{4} \tag{2}\\
& 0=\left(v_{1} v_{7}\right)+\left(v_{3}-v_{1}\right)
\end{align*}
$$

$+\left(v_{n}, v_{n}\right)$

Demo: Matrix norms
In-class activity: Matrix norms
inhnat "p-norms"

$$
\begin{aligned}
\|A\|_{2} & =\max _{\|x\|_{i} 1}\|A x\|_{2} \\
& =\max _{x} \frac{\left\|A_{x}\right\|_{2}}{\|x\|_{2}}
\end{aligned}
$$

Aside: if A is sym. maximizer x of $\left\|A_{x}\right\|_{2}$ will he the eigenvector with the leges ezersing $\|A\|_{2}=$ largest bigot A

Properties of Matrix Norms

$$
\begin{aligned}
& \left\|\|\left.\left[\begin{array}{lll}
D_{11} & & \\
& n_{22} & \\
& & D_{33}
\end{array}\right]\right|_{2}\right. \\
& \max \left|\left\|\left\lvert\,=\left[\begin{array}{lll}
P_{71} & & \\
& P_{22} & \\
& & \rho_{33}
\end{array}\right] x\right.\right\|_{2}\right.
\end{aligned}
$$

$$
\max \|x\|=1\left\|\begin{array}{c}
P_{11} x_{1} \\
D_{22} x_{2} \\
D_{33} x_{3}
\end{array}\right\|_{2}
$$

$$
\begin{array}{r}
\max _{M_{x} \|_{1}=}^{\left(D_{11} x_{1}\right)^{2}+\left(D_{n 2} x_{2}\right)^{2}+\left(D_{n \lambda} \lambda_{2}\right)^{2}} \\
\sqrt{\left(\max _{i} D_{i} \cdot 1\right)^{2}}=D_{m_{i}} \vdots
\end{array}
$$

$$
\left.\begin{aligned}
\left.\|\left[\begin{array}{lll}
D_{11} & & \\
& D_{22} & \\
& & n_{33}
\end{array}\right] \right\rvert\, & =\left|\begin{array}{ll}
D_{11} \\
n_{12} \\
D_{33}
\end{array}\right| \\
& =\max \left|D_{13}\right|
\end{aligned} \right\rvert\,
$$

$$
\begin{aligned}
& \|A\|_{\infty}=\max _{i} \sum_{j}\left|A_{i}{ }^{\prime} j\right| \\
& \|A\|_{1}=\max _{\|\lambda\|_{1}=1} A x
\end{aligned}
$$

if $y_{i}=\alpha \quad\|A\|_{1}+=\sum_{j} \alpha \cdot A_{j}$ $\sum_{1}\left|x_{1}\right|=1 \quad x=\binom{6}{0_{0}^{2}}\left|\|A\|_{1}=\operatorname{mex} x A_{i}\right|$

Example: Orthogonal Matrices
What is the 2-norm of an orthogonal matrix?

$$
\begin{aligned}
& Q \text { is orthogumal } \\
& Q^{+} Q=I \\
& \max _{\|x\|,}\left\|Q_{x}\right\|_{\substack{\max \\
\|x\|^{1}-1}}=\sqrt{\left(Q^{2} x\right)^{\top} \cdot Q_{x}} \\
& \|y\|_{2}^{2}=y^{\top} y
\end{aligned}
$$

$$
\begin{aligned}
\|Q\|_{2} & =\max _{\|x\|_{2}=1} \sqrt{Q x)^{\top} \cdot Q x} \\
& =\max _{\|\lambda\|_{2-1}} \sqrt{x^{+} Q^{+} Q x} \\
& =\max _{\|x\|_{2}=1 \sqrt{x^{+} x}}=1
\end{aligned}
$$

$$
\begin{aligned}
\|y\|_{2}^{2} & =y^{\top} y \\
& =\sum_{i}|y|^{2} \\
\|y\|_{2} & =\sqrt{y^{\top} y}
\end{aligned}
$$

Now, let's study condition number of solving a linear system

$$
A \boldsymbol{x}=\boldsymbol{b}
$$

$x:$? giver b

$$
\begin{aligned}
& A(x+\underbrace{\Delta x}_{\text {ont put error }})=\underbrace{b^{4} \Delta h}_{r \text { runt error }} \\
& \text { rel eur or }=\frac{\|\Delta x\|\|h\|}{\|\Delta b\|\|x\|}
\end{aligned}
$$

$$
\begin{aligned}
\text { rel error } & =\frac{\text { rel error in ont }}{\text { ret astor in in pet }} \\
& =\frac{\|\Delta x\| /\|x\|}{\|\Delta b\| /\|b\|}
\end{aligned}
$$

$$
\begin{aligned}
\text { relerr } & =\frac{\|A x\|\|b\|}{\|\Delta b\|\|x\|} \\
& =\frac{\left\|A^{-1} \Delta b\right\|\|A x\|}{\|\Delta b\|\|x \cdot\|} \\
& \leq\left\|A^{-1}\right\| \cdot\|A\|=\underbrace{\|A b\|\|x\|}_{=} \|
\end{aligned}
$$

$$
\begin{aligned}
\text { relerr } & =\frac{\|A x\|\|b\|}{\|\Delta b\|\|x\|} \\
& =\frac{\left\|A^{-1} \cdot \Delta b\right\| \cdot\|A x\|}{\|A b\|\|x\|} \\
& \leq \underbrace{\left\|A^{-1}\right\|\|A\| \frac{\|m b\|}{\| A}\| \| \|}_{\|(A)} \|
\end{aligned}
$$

$$
\left.(y+\Delta y)=A^{\prime} x+\Delta x\right)
$$

$y=A x$
tree is x

$$
y+\Delta y=A y A A^{\prime}
$$

evirs is ΔX
bound Ay with rap. y
worl case: Δx magnifred

$$
\Delta y=A_{\Delta x} \quad x \text { mesribecel luat }
$$

Demo: Condition number visualized
Demo: Conditioning of 2×2 Matrices

