

General LU Factorization (Gaussian Elimination)

$$A = \begin{bmatrix} a_{11} & \mathbf{a_{12}} \\ \mathbf{a_{21}} & A_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \mathbf{l_{21}} & L_{22} \end{bmatrix} \cdot \begin{bmatrix} u_{11} & \mathbf{u_{12}} \\ 0 & U_{22} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} - a_{12} - j : 1 \cdot [u_{11} - u_{12} - j] \\ a_{21} : |z_1 \cdot u_{11} = |z_1 = a_{21} / u_{11} \\ |z_1 = |z_1 - |z_1 - u_{12} - |z_1 - |$$

Demo: Gaussian Elimination

LU: Failure Cases?

Is LU/Gaussian Elimination bulletproof?

What can be done to get something like an LU factorization?

$$\begin{bmatrix} 1 & 0 \\ R_{21} & 1 \end{bmatrix} \cdot \begin{bmatrix} h_{11} & h_{12} \\ 0 & h_{21} \end{bmatrix} \cdot \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & b_{22} \end{bmatrix}$$

$$\begin{array}{c} h_{11} \cdot 1 = 0 \\ h_{11} \cdot J_{21} = 1 \cdot 0 = 2 \\ \vdots \\ 0 & 0 \end{array}$$

Partial Pivoting Example

Lets try to get an pivoted LU factorization of the matrix $A = \left(\begin{array}{cc} 0 & 1\\ 2 & 1 \end{array}\right).$ $\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} = \int A$ $\left(\begin{array}{cc}
0 & 1\\
1 & 0
\end{array}\right)
\left(\begin{array}{cc}
0 & 1\\
- & 1
\end{array}\right)$ $LN(PA) \rightarrow \begin{bmatrix} L \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$

Permutation Matrices

General LU Partial Pivoting

Computational Cost

4

What is the computational cost of multiplying two $n \times n$ matrices?

What is the computational cost of carrying out LU factorization on an $n\times n$ matrix?

More cost concerns

LU: Rectangular Matrices

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo

Error, Accuracy and Convergence Floating Point

Modeling the World with Arrays

The World in a Vector What can Matrices Do? Graphs

Sparsity

Norms and Errors The 'Undo' Button for Linear Operations: LU Repeating Linear Operations: Eigenvalues and Steady States Eigenvalues: Applications Low-Rank Approximation

Eigenvalue Problems: Setup/Math Recap

A is an $n \times n$ matrix.

• $x \neq \mathbf{0}$ is called an eigenvector of A if there exists a λ so that

 $A\boldsymbol{x} = \lambda \boldsymbol{x}.$

- In that case, λ is called an eigenvalue.
- By this definition if x is an eigenvector then so is ax, therefore we will usually seek normalized eigenvectors, so ||x||₂ = 1.

Finding Eigenvalues

Distinguishing eigenvectors

Assume we have normalized eigenvectors x_1, \ldots, x_n with eigenvalues $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$. Show that the eigenvectors are linearly independent.

