LU Facturication - solve lineas syatems

$$
\begin{aligned}
& -A=L U \\
& \uparrow^{\text {Thopes dri }} \\
& \text { lowes tri } \\
& A_{x}=b \Rightarrow L \cdot\left(U_{x}\right)=b
\end{aligned}
$$

General LU Factorization (Gaussian Elimination)

$$
\begin{gathered}
A=\left[\begin{array}{l|l}
a_{11} & \mathbf{a}_{12} \\
\mathbf{a}_{21} & A_{22}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
l_{21} & L_{22}
\end{array}\right] \cdot\left[\begin{array}{cc}
u_{11} & \mathbf{u}_{12} \\
0 & U_{22}
\end{array}\right] \\
1 n-1 \\
{\left[a_{11}-a_{12}-\right]=1 \cdot\left[u_{11}-u_{12}-\right]} \\
a_{21}=\left.\left.\right|_{21} \cdot h_{11} \Rightarrow\right|_{21}=a_{21} / u_{11} \\
\quad=1 \cdot \\
\left.S_{22}=A_{22}-l_{21} \cdot u_{12} \square\right]-1 \\
{\left[L u_{22}\right]=L u\left(S_{22}\right)}
\end{gathered}
$$

$$
\left.\begin{array}{rl}
A= & {\left[\begin{array}{ll}
1 & \\
e_{11} & L_{22}
\end{array}\right] \cdot\left[\begin{array}{cc}
n_{11}-n_{12} \\
u_{22}
\end{array}\right]} \\
& \underline{A_{12}}-\sqrt{a_{11}} \\
& \\
& \\
& \\
A_{22} & \square-\Pi
\end{array}\right]
$$

$$
\begin{aligned}
& \begin{array}{|l||l|}
\hline & U_{12} \\
\hdashline L_{21} & \left\lvert\, \begin{array}{l}
-\frac{1}{A_{22}} \\
i_{21}
\end{array}\right. \\
\hline
\end{array} \\
& S_{22}=A_{21}-C_{21} U_{12} \\
& \bar{u}_{12}=\text { first row of } S_{2} \\
& \bar{l}_{21}=S_{22}[i, 1] / S_{22}[1,1]
\end{aligned}
$$

Demo: Gaussian Elimination

LU: Failure Cases?
Is LU/Gaussian Elimination bulletproof?

$$
\left[\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right]
$$

What can be done to get something like an LU factorization?

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 0 \\
l_{21} & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
u_{11} & u_{12} \\
0 & b_{22}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]} \\
& \underbrace{u_{11} \cdot 1=0}_{0} \\
& \underbrace{q_{11} \cdot l_{21}}_{0}+\underbrace{1 \cdot 0}_{0}=2
\end{aligned}
$$

Partial Pivoting Example
Lets try to get an pivoted LU factorization of the matrix

$$
A=\left(\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right) .
$$

$$
\left.\begin{array}{rl}
\left(\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right)= & \underset{\sim}{P A} \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right) \\
L M(P A) & \rightarrow \\
L & l l \\
1 & 0 \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right]
$$

Permutation Matrices
How do we capture 'row swaps' in a factorization?

$$
\begin{aligned}
& V=\left(\begin{array}{l}
0 \\
0 \\
a \\
0 \\
b \\
0
\end{array}\right) \longleftrightarrow\left(\begin{array}{l}
0 \\
0 \\
b \\
0 \\
a \\
0
\end{array}\right)=w \\
& w=P w \\
& P=\left[\begin{array}{lllll}
1 & 0 & & & \\
0 & 1 & 0 & 0 & 1 \\
& 0 & 1 & 0 & \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

General LU Partial Pivoting

$$
\begin{aligned}
& \text { What does the overall process look like? } \\
& {\left[\left(\begin{array}{lll}
2 & 4 & 7 \\
1 & 5 & 8 \\
3 & 6 & 9
\end{array}\right) \stackrel{f}{\leftrightarrows}\left(\begin{array}{lll}
3 & 6 & 9 \\
1 & 5 & 8 \\
2 & 4 & 7
\end{array}\right)\right.} \\
& L=\left(\begin{array}{l}
1 \\
\frac{1}{3} \\
7 / 3
\end{array}\right) u=\left(\begin{array}{lll}
3 & 6 & 9 \\
& &
\end{array}\right) \\
& \left(\begin{array}{ll}
5 & 8 \\
4 & 7
\end{array}\right)-\binom{1 / 3}{2 / 3}^{\left(\begin{array}{ll}
6 & 9
\end{array}\right)}=\left(\begin{array}{ll}
3 & 5 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

$$
\left.\begin{array}{l}
r A=L u \\
S_{22}=A_{22}-l_{21} u_{12} \\
P_{S} S_{22}=l_{22} u_{22} \\
l_{21} \\
l_{22}
\end{array}\right)\left(\begin{array}{ll}
1 & u_{11} \\
a_{n} \\
u_{n}
\end{array}\right) .
$$

$$
\begin{aligned}
& r_{1} \overbrace{1}^{n} \quad 1 \\
& P_{3} S=A_{n 2} C_{12} \quad P_{s}: s(n-\hat{1})-h_{g}-1_{n-1} \\
& P=P_{1}\left[\begin{array}{ll}
1 & \\
& P_{5}
\end{array}\right]
\end{aligned}
$$

$$
P A=L h
$$

P is inverdible (fall ramb) $\rho=p^{\top}$? $\quad\left[i_{i}{ }_{i} 1\right]$ p is binary

$$
p^{\top}=p^{-1}
$$

$$
\begin{array}{ll}
P A=L U & \Rightarrow A=P^{-1} L h \\
A x=b & A
\end{array} \quad P^{\pi} L h
$$

solve $L y=P b=b \&$ Ewt. ints. solve $U_{x}: y F$ bad. sula.

Computational Cost
What is the computational cost of multiplying two $n \times n$ matrices?

$$
{ }_{(i, j, 6)} C_{1 j}=\sum_{x, 1}^{n} A_{i s} B_{k j}^{\prime} \quad 2 n^{3}-n^{2}
$$

What is the computational cost of carrying out LU factorization on an $n \times n$ matrix?

$$
\begin{aligned}
& \square-\left.\right|^{n} \Rightarrow 2 n^{2} \text { pere } \operatorname{livins}_{n-1}^{n} \\
& \begin{array}{c}
T_{L h} \approx \sum_{i=1}^{n} 2 i^{2} \approx \frac{2}{3} n^{2} \\
\operatorname{mnl} h_{1} \\
\operatorname{ad} d_{1}
\end{array}
\end{aligned}
$$

More cost concerns
What's the cost of solving $A \boldsymbol{x}=\boldsymbol{b}$? $0\left(n^{3}\right)$
$O\left(n^{3}\right) \downarrow \operatorname{sic}^{1} P A=C M$
$O\left(n^{2}\right)$ to solve $A x=b \quad \angle U x=P b$
What's the cost of solving $A x_{1}=b_{1}, \ldots, A x_{n}=b_{n}$? $\quad A \times=B$

What's the cost of finding A^{-1} ?

$$
\begin{array}{ll}
A X_{X}^{\text {Solve }}=I & \text { 鸭 } \\
X=A^{-1} & (\angle U)^{-1}=U^{-1} L^{-1}
\end{array}
$$

LU: Rectangular Matrices

Can we compute LU of an $m \times n$ rectangular matrix?

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo
Error, Accuracy and Convergence Floating Point
Modeling the World with Arrays The World in a Vector What can Matrices Do? Graphs
Sparsity
Norms and Errors
The 'Undo' Button for Linear
Operations: LU
Repeating Linear Operations: Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and
Least Squares
SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition
Numbers
Low-Rank Approximation
Interpolation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D
Optimization in n Dimensions

Eigenvalue Problems: Setup/Math Recap

A is an $n \times n$ matrix.

- $\boldsymbol{x} \neq \mathbf{0}$ is called an eigenvector of A if there exists a λ so that

$$
A \boldsymbol{x}=\lambda \boldsymbol{x} .
$$

- In that case, λ is called an eigenvalue.
- By this definition if \boldsymbol{x} is an eigenvector then so $\alpha \boldsymbol{x}$, thenefore we will usually seek normalized eigenvectors, $\quad\|\boldsymbol{x}\|_{2}=1$)

Finding Eigenvalues
How do you find eigenvalues?

$$
\begin{array}{ll}
A x=\lambda x & \operatorname{det}\left(\left(\begin{array}{cc}
a b \\
c & d
\end{array}\right)\right)= \\
(A-I \lambda) x=0 & =a A-b c \\
\operatorname{det}(A-I \lambda) & \operatorname{ded}(A B)=\operatorname{ded} A^{\prime} A^{\prime} \\
-\operatorname{ded}(B)
\end{array}
$$

instal Appinnmet λ

Distinguishing eigenvectors
Assume we have normalized eigenvectors $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$ with eigenvalues $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots>\left|\lambda_{n}\right|$. Show that the eigenvectors are linearly independent.

$$
0=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots \alpha_{n} x_{n}
$$

matiply by A many Aus

$$
\begin{aligned}
& y^{(k)}=A^{k} \cdot\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots \alpha_{n} x_{n}\right) \\
& \lim _{k \rightarrow \infty} y^{(b)} \operatorname{iim}_{n \rightarrow \infty} \alpha_{1} \lambda_{1}^{k} \lambda_{1}^{x_{1}+\alpha_{2}} \lambda_{2}^{k} x_{2}+\ldots \alpha_{n} x_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{y}^{(6)}=y^{(k)} / \lambda_{1}^{k}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\|\alpha_{1} x_{1}\right\|=\alpha_{1}\left\|x_{1}\right\|=\alpha_{\text {. }}
\end{aligned}
$$

