Eigenvalue Problems: Setup/Math Recap

A is an $n \times n$ matrix.

- $\boldsymbol{x} \neq \mathbf{0}$ is called an eigenvector of A if there exists a λ so that

$$
A \boldsymbol{x}=\lambda \boldsymbol{x} .
$$

- In that case, λ is called an eigenvalue.
- By this definition if \boldsymbol{x} is an eigenvector then so is $\alpha \boldsymbol{x}$, therefore we will usually seek normalized eigenvectors, so $\|\boldsymbol{x}\|_{2}=1$.

$$
\begin{aligned}
& x_{3}=\alpha_{1} x_{1}+\alpha_{2} x_{2} \\
& A^{i_{3}}=A^{k}\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{3}^{k} x_{3}=\lambda_{1}^{k} \alpha_{1} x_{1}+\lambda_{2}^{k} \alpha_{2} x_{2} \\
& \lim _{6 \rightarrow \infty} \frac{A^{k} x_{3}}{\lambda_{3}^{k}}= \frac{\lambda_{1}^{k}}{\lambda_{3}^{k}} \alpha_{1} x_{1}+\frac{\lambda_{2}^{k}}{\lambda_{3}^{k}} \alpha_{2} x_{2} \\
&\left(\frac{\lambda_{1}}{\lambda_{3}}\right)^{k} \\
&\left\|x_{3}\right\|=\left(\frac{\lambda_{1}}{\lambda_{3}}\right)^{k} \alpha_{\|}\left\|x_{1}\right\|+\ldots
\end{aligned}
$$

rigenvectors with hifd. eiguchs

- limarly indypendent

$$
\begin{array}{c|c}
& A=A^{\top} \text { symmatric } \\
x_{1} \lambda_{1} \quad x_{2} \lambda_{2} \\
x_{1}^{\top} A & x_{1}^{\top}\left(A \quad x_{2}\right)=x_{1}^{\top} \lambda_{2} x_{2}=\lambda_{2} x_{1}^{\top} x_{2} \\
=x_{1}^{\top} A^{\top} & x_{1}^{\top} \\
=\left(A x_{1}\right)^{\top} & \left(x_{1}^{\top} A\right) x_{2}=\lambda_{1} \underbrace{x_{1}^{\top} x_{2}} \\
=\lambda_{1} x_{1}^{\top}
\end{array}
$$

Distinguishing eigenvectors

Assume we have normalized eigenvectors $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$ with eigenvalues $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots>\left|\lambda_{n}\right|$. Show that the eigenvectors are linearly-independent.

Diagonalizability
If we have n eigenvectors with different eigenvalues, the matrix is diagonalizable.

$$
\begin{aligned}
& X=\left[\begin{array}{ccc}
1 & 1 & \\
x_{1} & x_{2} & \ldots \\
1 & 1 & \\
x_{n}
\end{array}\right] \left\lvert\, A X=\left[\begin{array}{ccc}
1 & & 1 \\
\lambda_{1} x_{2} & \ldots & \lambda_{n} x_{n} \\
1 & & 1
\end{array}\right]\right. \\
& A X=\left[\begin{array}{ccc}
1 & & 1 \\
x_{1} & \cdots & x_{n} \\
1 & & 1
\end{array}\right] \cdot \underbrace{\left[\begin{array}{lll}
\lambda_{1} & & \\
& & \\
& & \lambda_{n}
\end{array}\right]} \\
& A X=X D \Rightarrow A=X D X^{-1}
\end{aligned}
$$

similarity traniformatim
A is similar to B if $\exists X$ sit $A=X B X^{-1}$
symmetric case
X is full rank
X is orthugora 1

$$
\begin{aligned}
& \longrightarrow X^{\top}=X^{-1} \\
& A=X D X^{-1}=X D X^{\top}
\end{aligned}
$$

Are all Matrices Diagonalizable?
Give characteristic polynomial, eigenvalues, eigenvectors of

$$
\begin{aligned}
&\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
&\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{1}{0}=\binom{1}{0}\langle \\
&\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{x}{y}=\binom{x+y}{y} \\
& x+y=\lambda x \Rightarrow y=0 \\
& y=\lambda y \Rightarrow \lambda
\end{aligned}
$$

Power Iteration
We can use linear-independence to find the eigenvector with the largest eigenvalue. Consider the eigenvalues of A^{1000}

$$
\begin{aligned}
& \lambda_{1} \ldots \lambda_{n} \text { of } A \\
& x_{1} \cdots x_{n} \text { eig-vers } \\
& A^{1000} x_{1}=A^{999}\left(A^{1} x_{1}\right)=\lambda_{1} A^{909} x_{1} \\
& \lambda_{1}^{1000} \ldots \lambda_{n}^{1000} \operatorname{ver}_{\text {of }}^{10 g A_{A} \cdot 0.100}=\lambda_{1}^{1000} x_{1}
\end{aligned}
$$

$$
\begin{aligned}
& y \text { - random vector } \\
& y=\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n} \\
& A y=\alpha_{1} \lambda_{1} x_{1}+\cdots+\alpha_{n} \lambda_{n} x_{n} \\
& \frac{A^{1000} y}{\lambda_{1}^{1000}}=\frac{\alpha_{1} \lambda_{1} x_{1}+\ldots+\alpha_{n} \lambda_{n}^{1000} x_{n}}{\lambda_{1}^{1000}}
\end{aligned}
$$

i. 400
normslizd
eig-vietors
$\frac{1}{x}=3\left(\dot{x}_{1}+x_{2}\right)$

Symmedric

Power Iteration: Issues?
What could go wrong with Power Iteration?
overflow
\rightarrow kissed by normalization
normalind Power iteration

$$
\begin{aligned}
& \text { if } \lambda_{1}=\lambda_{2} \text { erg res } x_{1}, x_{2} \\
& \bar{x}=\alpha_{1} x_{1}+\alpha_{2} x_{2} \mid A \bar{x}=\lambda_{1} \bar{x}
\end{aligned}
$$

What about Eigenvalues?
Power Iteration generates eigenvectors. What if we would like to know eigenvalues?

$$
\frac{x^{\top} A>}{x^{\top} x} \quad \begin{gathered}
\text { Rayleigh } \\
\text { quotient }
\end{gathered}
$$

Convergence of Power Iteration
What can you say about the convergence of the power method?
Say $\boldsymbol{v}_{1}^{(k)}$ is the k th estimate of the eigenvector \boldsymbol{x}_{1}, and

$$
e_{k}=\left\|\boldsymbol{x}_{1}-\boldsymbol{v}_{1}^{(k)}\right\|
$$

$$
\begin{aligned}
& v_{1}^{(k+1)}=\frac{A v_{1}^{(k)}}{\left\|v_{1}^{(k)}\right\|}=\frac{A\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}+.\right)}{\left\|v_{1}^{(k)}\right\|} \\
& =\lambda_{1}\left(\alpha_{1} x_{1}+\alpha_{2} \frac{\lambda_{2}}{\lambda_{1}} x_{2}+\ldots\right)
\end{aligned}
$$

Transforming Eigenvalue Problems
Suppose we know that $A \boldsymbol{x}=\lambda \boldsymbol{x}$. What are the eigenvalues of these changed matrices?

$$
\begin{aligned}
& \begin{array}{l}
\text { Power. } A \rightarrow A^{k} \\
\lambda^{k} \\
\text { Shift. } A \rightarrow A-\sigma I \\
\quad(A-\sigma I) x=A_{x}-\sigma I x=\lambda x-\sigma x=(\lambda-\sigma) x
\end{array} \\
& \hline
\end{aligned}
$$

Inversion. $A \rightarrow A^{-1}$

$$
\begin{aligned}
A x=\lambda x & { }^{\prime} \times \pi=A^{-1} x \\
A^{\prime-1} A x=A^{-1} \lambda x \Rightarrow & x=\lambda A^{-1} \lambda
\end{aligned}
$$

Inverse Iteration / Rayleigh Quotient Iteration
Describe inverse iteration. \hookrightarrow finds eig-vee with

$$
x^{(k+1)}=A^{-1} x^{(k)} \text { smelled aig-val }
$$

solve $A x^{(k+1)}=x^{(t)}$
Describe Rayleigh Quotient Iteration. c loses 1 to σ

$$
x^{(k+1)}=(A-\sigma I)^{-1} x^{(k)}
$$

Solve for $x^{(b+i)}$ in

$$
(A-\sigma J)^{(6+1)}=x^{(6)}
$$

