Oudline
Brisef Examlet Overveew SVD

Revrew Definition SVD Arplications linear systemes leust squares - data fitting approximatron

Compuans $k(A)$, given $A X, A^{-1} X$ Estimatry

$$
\begin{aligned}
& K^{\prime} A \mid=\|A\|_{2}\left\|A^{-1}\right\|_{2}
\end{aligned}
$$

Singular Value Decomposition
What is the Singular Value Decomposition ('SVD')?
$A=U \sum_{n} V^{\top}$ right simpler rectos qr singular values lela segulv rectus
singular vocturs

$$
\left(A^{\top} A\right) V=V \varepsilon^{2}
$$

$$
A^{+}=V \sum U^{\top}
$$

A are the eigenvector of $A A^{+}$

$$
A A^{7} U=U \varepsilon^{2}
$$

How can I compute an SVD of a matrix A ?
Find the columns it V Las the egmentors of $A^{\top} A$

$$
\begin{aligned}
& \text { Diajomisu } A^{\top} A \\
& A^{\top} A V=V \underline{\Sigma}^{2} \\
& A=U \Sigma v^{\top} \\
& \text { if } \sigma_{1} \text { (Ainguncianty } \\
& \text { is zero an A A is } \operatorname{sen} A \\
& \text { sphere, the A ss s.rader } \\
& A \vee \Sigma^{-1}=U \\
& \text { invertible? }
\end{aligned}
$$

Demo: Computing the SVD

$$
-n \times n
$$

Dtaguaniration hes cost $\sigma\left(r^{3}\right)$
$A^{\pi} A \cup$ has ass $O\left(n^{3}\right)$

$$
\rightarrow \substack{\text { constant high } \\ \rightarrow \text { relahuly }}
$$

How Expensive is it to Compute the SVD?
Demo: Relative Cost of Matrix Factorizations

‘Reduced’ SVD
Is there a 'reduced' factorization for non-square matrices?

$$
\begin{aligned}
& \text { Rednal SVD } \\
& \square=\square \backslash \square \\
& \square=\square \backslash I
\end{aligned}
$$

Outline

```
Python, Numpy, and Matplotlib
Making Models with Polynomials
Making Models with Monte
Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays
    The World in a Vector
    What can Matrices Do?
    Graphs
    Sparsity
Norms and, Errors
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications
```

Approximate Undo: SVD and

Least Squares

SVD: Applications
Solving Funny-Shaped Linear Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation
Interpolation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D
Optimization in n Dimensions

Outline

```
Python, Numpy, and Matplotlib
Making Models with Polynomials
Making Models with Monte
Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays
    The World in a Vector
    What can Matrices Do?
    Graphs
    Sparsity
Norms and, Errors
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications
```

Approximate Undo: SVD and

Least Squares

SVD: Applications
Solving Funny-Shaped Linear Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation
Interpolation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D
Optimization in n Dimensions

Solve Square Linear Systems
Can the SVD $A=U \Sigma V^{T}$ be used to solve square linear systems?
At what cost (once the SVD is known)?

$$
A=U \sum V^{\top}
$$

$$
A x=b \Rightarrow U \Sigma V^{-1} x=b
$$

$$
\begin{array}{ll}
\text { find } & \\
& v^{\top} x=u^{\top} b \\
& v^{\top} x=\varepsilon^{-1} U^{\top} b \\
& x=\underbrace{v \varepsilon^{-1} u^{\top} b}_{\sim A^{-1}}
\end{array}
$$

Tall and Skinny Systems

Consider a 'tall and skinny' linear system, i.e. one that has more equations than unknowns:

In the figure: $m>n$. How could we solve that?

Solving Least-Squares
How can I actually solve a least-squares problem $A \boldsymbol{x} \cong \boldsymbol{b}$?
minimiu $\left\|A_{x}-b\right\|_{2}^{2}$ ~mininge $\left\|A_{x}+\right\| \|_{2}$

$$
\begin{aligned}
& A=U \varepsilon V^{7} \\
& \left\|u \varepsilon v^{\top} x-b\right\|_{2}^{\infty} \sim\left\|\sum v^{\top} x-U^{\top} b\right\|_{2} \\
& \text { fivid -ment }
\end{aligned}
$$

$$
\begin{aligned}
& A=u \Sigma V^{\top} \\
& A^{+}=V \Sigma^{+} u^{\top} \\
& \text { Squev case } \\
& A^{-1}=\left(u \varepsilon V^{\top}\right)^{-1}=V^{-\top} \Sigma^{-1} u^{-1} \\
&=V \varepsilon^{-1} u^{\top} \\
& \approx V \Sigma^{+} u^{\top}
\end{aligned}
$$

In-class activity: SVD and Least Squares

The Pseudoinverse: A Shortcut for Least Squares

How could the solution process for $A \boldsymbol{x} \cong \boldsymbol{b}$ be with an SVD $A=$ $U \Sigma V^{T}$ be 'packaged up'?

The Normal Equations
You may have learned the 'normal equations' $A^{T} A \boldsymbol{x}=A^{T} \boldsymbol{b}$ to solve $A \boldsymbol{x} \cong \boldsymbol{b}$.
Why not use those?

$$
\operatorname{cond}\left(A^{+} A\right) \sim \operatorname{cond}(A)^{2}
$$

Outline

```
Python, Numpy, and Matplotlib
Making Models with Polynomials
Making Models with Monte
Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays
    The World in a Vector
    What can Matrices Do?
    Graphs
    Sparsity
Norms and, Errors
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications
```

Approximate Undo: SVD and

Least Squares

SVD: Applications
Solving Funny-Shaped Linear Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation
Interpolation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D
Optimization in n Dimensions

Fitting a Model to Data

How can I fit a model to measurements? E.g.:

Number of days in polar vortex

Demo: Data Fitting using Least Squares

Outline

```
Python, Numpy, and Matplotlib
Making Models with Polynomials
Making Models with Monte
Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays
    The World in a Vector
    What can Matrices Do?
    Graphs
    Sparsity
Norms and, Errors
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications
```

Approximate Undo: SVD and

Least Squares

SVD: Applications
Solving Funny-Shaped Linear Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation
Interpolation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D
Optimization in n Dimensions

Meaning of the Singular Values
What do the singular values mean? (in particular the first/largest one)

$$
\begin{aligned}
& \sigma_{\text {max }}=\|A\|_{2} \\
& \sigma_{\text {min }}=\max _{1} Z_{i 1}^{+} \\
& \left\|A^{\prime}\right\|_{2}=\max _{\|.\|_{1}=1}\left\|U \varepsilon V^{\top} x\right\|_{2} \quad \operatorname{cor} l(A)=\frac{\sigma_{\max }}{\sigma_{\operatorname{man}}} \\
& =\max _{\| y=1}\|U \Sigma y\|_{7} \\
& =\max _{\Pi_{y} \|=1}\|\varepsilon y\|_{2}=\max _{r} \varepsilon_{i: i}=\sigma_{\text {max }}
\end{aligned}
$$

