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Python, Numpy, and Matplotlib

Making Models with Polynomials
Making Models with Monte

Carlo

Error, Accuracy and Convergence

Floating Point

Modeling the World with Arrays
The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear

Operations: LU
Repeating Linear Operations:

Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and
Least Squares
SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition
Numbers
Low-Rank Approximation
Interpolation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D
Optimization in n Dimensions



Recap: Interpolation

Starting point: Looking for a linear combination of functions ¢; to
hit given data points (z;,y;).

Interpolation becomes solving the linear system:

Nfunc
Z Q; cpj x;) ~ Va =y.
’w,h‘ =0, Cw%‘/w
Want unique answer: Pick Nygpne = N — V square.
V is called the (generalized) Vandermonde matrix.

Main lesson:

V (coefficients) = (values at nodes) .



Rethinking Interpolation

We have so far always used monomials (1, z, 2, 23,...) and
equispaced points for interpolation. It turns out that this has
significant problems.

Demo: Monomial interpolation



Demo: Choice of Nodes for Polynomial Interpolation
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Interpolation: Choosing Basis Functio

Both function basis and point set are
we pick? )
Ideas for basis functions:

Splines (piecewise polynomials)
» Orthogonal polynomials
» Sines and cosines
» ‘Bumps’ (‘Radial Basis Functions')
Ideas for nodes:
> Equis@
» ‘Edge-Clustered’ (so-called Chebyshev/Gauss/... nodes)
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Better Conditioning: Orthogonal Polynomials X ‘:‘1}"14‘9‘

What caused monomials to have a terribly conditioned Vander-
monde?
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What's a way to make sure two vectors are not like that?
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But polynomials are functions!
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Better Conditioning: Orthogonal Polynomials (1)

But how can | practically compute the Legendre polynomials?
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Another Family of Orthogonal Polynomials: Chebyshev
Three equivalent definitions: wx <‘( ) ‘0'7\4; = Sw-’--‘
» Result of Gram-Schmidt with weight 1/v/1 — 22 = Y%
What is that weight? X

Yt - ) xtagn e / ™
> cos(k cos™ ! (x))

> Ti(x) = Qka_g.CC) — Tk_l(w)
Demo: Chebyshev interpolation part |

What are good nodes to use with Chebyshev polynomials?
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Chebyshev Nodes

Might also consider zeros (instead of roots) of T:

2t +1
i = =1...,k).
x cos< ok 7T> (1 k)

The Vandermonde for these (with T}) can be applied in O(N log N)
time, too.

It turns out that we were still looking for a good set of interpolation
nodes.

We came up with the criterion that the nodes should bunch towards
the ends. Do these do that?
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Demo: Chebyshev interpolation part Il






Calculus on Interpolants

~

Suppose we have an interpolant f(a:) with f(z;) =
1=1,...,n

(z;) for

f(z) = a1p1(z) + -+ - + anpn(T)

How do we compute the derivative of f?
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Suppose we have function values at nodes (z;, f(x;)) for i =
1,...,n for a function f. If we want f’(x;), what can we do?
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