


Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials
Making Models with Monte
Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays

The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and
Least Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition
Numbers
Low-Rank Approximation

Interpolation

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization
in 1D

Optimization in n Dimensions



Recap: Interpolation

Starting point: Looking for a linear combination of functions ϕi to
hit given data points (xi, yi).

Interpolation becomes solving the linear system:

yi = f(xi) =

Nfunc�

j=0

αj ϕj(xi)� �� �
Vij

↔ Vα = y.

Want unique answer: Pick Nfunc = N → V square.

V is called the (generalized) Vandermonde matrix.

Main lesson:

V (coefficients) = (values at nodes) .



Rethinking Interpolation

We have so far always used monomials (1, x, x2, x3, . . .) and
equispaced points for interpolation. It turns out that this has
significant problems.

Demo: Monomial interpolation



Demo: Choice of Nodes for Polynomial Interpolation



Interpolation: Choosing Basis Function and Nodes

Both function basis and point set are under our control. What do
we pick?

Ideas for basis functions:

� Monomials 1, x, x2, x3, x4, . . .

� Functions that make V = I → ‘Lagrange basis’

� Functions that make V triangular → ‘Newton basis’

� Splines (piecewise polynomials)

� Orthogonal polynomials

� Sines and cosines

� ‘Bumps’ (‘Radial Basis Functions’)

Ideas for nodes:

� Equispaced

� ‘Edge-Clustered’ (so-called Chebyshev/Gauss/... nodes)



Better Conditioning: Orthogonal Polynomials

What caused monomials to have a terribly conditioned Vander-
monde?

What’s a way to make sure two vectors are not like that?

But polynomials are functions!





Better Conditioning: Orthogonal Polynomials (II)

But how can I practically compute the Legendre polynomials?



Another Family of Orthogonal Polynomials: Chebyshev

Three equivalent definitions:

� Result of Gram-Schmidt with weight 1/
√
1− x2

What is that weight?

� Tk(x) = cos(k cos−1(x))

� Tk(x) = 2xTk(x)− Tk−1(x)

Demo: Chebyshev interpolation part I

What are good nodes to use with Chebyshev polynomials?



Chebyshev Nodes

Might also consider zeros (instead of roots) of Tk:

xi = cos

�
2i+ 1

2k
π

�
(i = 1 . . . , k).

The Vandermonde for these (with Tk) can be applied in O(N logN)
time, too.

It turns out that we were still looking for a good set of interpolation
nodes.

We came up with the criterion that the nodes should bunch towards
the ends. Do these do that?

Demo: Chebyshev interpolation part II





Calculus on Interpolants

Suppose we have an interpolant f̃(x) with f(xi) = f̃(xi) for
i = 1, . . . , n:

f̃(x) = α1ϕ1(x) + · · ·+ αnϕn(x)

How do we compute the derivative of f̃?

Suppose we have function values at nodes (xi, f(xi)) for i =
1, . . . , n for a function f . If we want f �(xi), what can we do?


