Interpolation
Differentiadion
Integration
"Quelsature"
Conrergence

$$
\begin{aligned}
& \tilde{f}(x)=a_{1} \varphi_{1}(x)+\ldots+a_{n} \varphi_{n}(x) \\
& f^{\prime}(x) \approx \tilde{f}^{\prime}(x)=a_{1} \varphi_{1}^{\prime}(x)+\ldots+a_{n} \varphi_{n}^{\prime}(k) \\
& f^{\prime}(x)=\left[\varphi_{1}^{\prime}(x), \ldots, \varphi_{n}^{\prime}(x)\right]\left[\begin{array}{c}
a_{1} \\
\vdots \\
c_{n}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ccc}
V^{\prime}=\left[\begin{array}{ccc}
x_{1}{ }^{\prime} & & \varphi_{n}^{\prime} \\
\varphi_{n}^{\prime}\left(\lambda_{1}\right) & \ldots & \varphi_{n}^{\prime}\left(x_{t}\right) \\
\vdots & & \\
\varphi_{1}\left(x_{2}\right) & &
\end{array}\right]
\end{array} \\
& \text { Given points } f(\vec{x}) \\
& \overrightarrow{f^{\prime}} \text { would line } f^{\prime}(\vec{x}) \\
& \vec{f}^{\prime}(\vec{x})=V^{\prime} V^{-1} f(\vec{x})
\end{aligned}
$$

About Differentiation Matrices
How could you find coefficients of the derivative in the original basis $\left(\varphi_{i}\right)$?

Give a matrix that finds the second derivative.

$$
y^{\prime}=V^{1} V^{-1} y
$$

appersimetor of $f^{\prime}|x|$ atead x

Demo: Taking derivatives with Vandermonde matrices

Finite Difference Formulas
It is possible to use the process above to find 'canned' formulas for taking derivatives. Suppose we use three points equispaced points ($x-h, x, x+h$) for interpolation (i.e. a degree-2 polynomial).

- What is the resulting differentiation matrix?
- What does it tell us for the middle point?

$$
\begin{aligned}
& V=\left[\begin{array}{ccc}
1 & x-h & \left(2-h_{n}\right. \\
1 & x & \lambda^{2} \\
1 & \lambda a h & \left(\lambda h^{2} h^{2}\right.
\end{array} \quad V^{\prime \prime}=\left[\begin{array}{lll}
0 & 1 & 2(\lambda-h) \\
0 & 1 & 2 x \\
0 & 1 & 2(x+h)
\end{array}\right]\right. \\
& D=V^{7} V^{-1}=\left[\begin{array}{ccc}
\frac{-1}{2 h} & 0 & \frac{1}{2 h} \\
\cdots & \cdots
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& D \cdot V=V^{\prime} \\
& {\left[\begin{array}{lll}
\frac{-1}{2 h} & 0 & \frac{1}{2 h}
\end{array}\right]\left[\begin{array}{ccc}
1 & x-h & (1-h)^{2} \\
1 & x & x^{2} \\
1 & x+h & (x+h)^{2}
\end{array}\right]} \\
& =\left[\begin{array}{lll}
0 & 1 & 2 x
\end{array}\right] \quad \frac{2 x h}{2 h}+\frac{2 h h}{2 h} \\
& -\frac{x-h}{2 h}+\frac{x+h}{2 h} \\
& \frac{-(x-h)^{2}}{2 h}+\frac{\left(x+h h^{2}\right.}{2 h}
\end{aligned}
$$

Can we use a similar process to compute (approximate) integrals of a function f ?

$$
\begin{aligned}
& \tilde{f}(\lambda)=a_{1} \varphi_{1}(\lambda)+\ldots a_{2} \varphi_{2}(\lambda) \\
& \int_{a}^{b} f(x) d z \approx \int_{\text {loss of aecarky }}^{b} f(A) d x=a_{1} \int_{c}^{b} \int_{c}^{b}(A) d x+a_{n} \int_{a_{n}^{b}}^{\int_{n}} \underbrace{b}(x) d
\end{aligned}
$$

Example: Building a Quadrature Rule
Demo: Computing the Weights in Simpson's Rule
Suppose we know

$$
\begin{array}{rl}
f\left(x_{0}\right)=2 & f\left(x_{1}\right)=0 \\
x_{0}=10 & x_{1}=\frac{1}{2} \\
x_{2}=1
\end{array}
$$

How can we find an approximate integral? $\quad \int_{0}^{1} f(x) d x$

$$
w=\left[\begin{array}{c}
\int_{0}^{1} 1 d z \\
1 \\
\int_{0} x^{2} d x
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 / 2 \\
1 / z
\end{array}\right]
$$

$$
\begin{aligned}
& V=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 / 2 & 1 / 4 \\
1 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
x_{0}^{0} & i_{0}^{1} & x_{0}^{2} \\
x_{0}^{0} & x_{1}^{1} & x_{1}^{2} \\
x_{2} & i_{2}^{1} & x_{7}^{n}
\end{array}\right] \\
& a=V^{-1}\left[\begin{array}{l}
7 \\
0 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \\
\vdots \\
1
\end{array}\right] \\
& \text { inteyna }=w^{\top} \cdot a \quad(x, y) \\
& =\frac{w^{\top} V^{-1}}{w}
\end{aligned}
$$

Facts about Quadrature

What does Simpson's rule look like on $[0,1 / 2]$?

What does Simpson's rule look like on $[5,6]$?

How accurate is Simpson's rule with n points and functions?

Accrasacy with n points/furden Intepolatan error $O\left(h^{n+1}\right)$ Integratur ussor $O\left(L^{n+2}\right)$

Diftereriadu error $O\left(h^{n}\right)$

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo
Error, Accuracy and Convergence Floating Point
Modeling the World with Arrays
The World in a Vector
What can Matrices Do?
Graphs
Sparsity
Norms and Errors
The 'Undo' Button for Linear
Operations: LU
Repeating Linear Operations: Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and
Least Squares
SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition
Numbers
Low-Rank Approximation
Interpolation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D
Optimization in n Dimensions

What is linear convergence? quadratic convergence?

About Convergence Rates

Demo: Rates of Convergence

Characterize linear, quadratic convergence in terms of the 'number of accurate digits'.

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo
Error, Accuracy and Convergence Floating Point
Modeling the World with Arrays
The World in a Vector
What can Matrices Do?
Graphs
Sparsity
Norms and Errors
The 'Undo' Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least Squares
SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition
Numbers
Low-Rank Approximation
Interpolation
Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization
in 1D
Optimization in n Dimensions

Solving Nonlinear Equations

What is the goal here?

Bisection Method

Assume there is a zero on the interval $[a, b]$ and that f is continuous, perform binary search.
Demo: Bisection Method
What's the rate of convergence? What's the constant?

Newton's Method

Derive Newton's method.

Demo: Newton's method
Demo: Convergence of Newton's Method

What are some drawbacks of Newton?

Secant Method

What would Newton without the use of the derivative look like?

Demo: Secant Method

In-class activity: Nonlinear equations in 1D

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo
Error, Accuracy and Convergence Floating Point
Modeling the World with Arrays
The World in a Vector
What can Matrices Do?
Graphs
Sparsity
Norms and Errors
The 'Undo' Button for Linear
Operations: LU
Repeating Linear Operations: Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least Squares
SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition
Numbers
Low-Rank Approximation
Interpolation
Iteration and Convergence
Solving One Equation

Solving Many Equations

Finding the Best: Optimization
in 1D
Optimization in n Dimensions

Solving Nonlinear Equations

What is the goal here?

Newton's method

What does Newton's method look like in n dimensions?

Newton: Example

Set up Newton's method to find a root of

$$
f(x, y)=\binom{x+2 y-2}{x^{2}+4 y^{2}-4}
$$

Demo: Newton's method in n dimensions

Secant in n dimensions?

What would the secant method look like in n dimensions?

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo
Error, Accuracy and Convergence Floating Point
Modeling the World with Arrays
The World in a Vector
What can Matrices Do?
Graphs
Sparsity
Norms and Errors
The 'Undo' Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and Least Squares
SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition
Numbers
Low-Rank Approximation
Interpolation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D
Optimization in n Dimensions

Optimization

State the problem.

Optimization: What could go wrong?

What are some potential problems in optimization?

Optimization: What is a solution?

How can we tell that we have a (at least local) minimum? (Remember calculus!)

Newton's Method

Let's steal the idea from Newton's method for equation solving: Build a simple version of f and minimize that.

Demo: Newton's method in 1D
In-class activity: Optimization Methods

Golden Section Search

Would like a method like bisection, but for optimization. In general: No invariant that can be preserved.
Need extra assumption.

Demo: Golden Section Search Proportions

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo
Error, Accuracy and Convergence Floating Point
Modeling the World with Arrays
The World in a Vector
What can Matrices Do?
Graphs
Sparsity
Norms and Errors
The 'Undo' Button for Linear
Operations: LU
Repeating Linear Operations: Eigenvalues and Steady States Eigenvalues: Applications

Approximate Undo: SVD and Least Squares
SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition
Numbers
Low-Rank Approximation
Interpolation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D
Optimization in n Dimensions

Optimization in n dimensions: What is a solution?

How can we tell that we have a (at least local) minimum? (Remember calculus!)

Steepest Descent

Given a scalar function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at a point \boldsymbol{x}, which way is down?

Demo: Steepest Descent

Newton's method ($n \mathrm{D}$)

What does Newton's method look like in n dimensions?

Demo: Newton's method in n dimensions

Demo: Nelder-Mead Method

Nonlinear Least Squares/Gauss-Newton

What if the f to be minimized is actually a 2 -norm?

$$
f(\boldsymbol{x})=\|\boldsymbol{r}(\boldsymbol{x})\|_{2}, \quad \boldsymbol{r}(\boldsymbol{x})=\boldsymbol{y}-\boldsymbol{f}(\boldsymbol{x})
$$

Demo: Gauss-Newton

