Interpolation Differentiation Integration "andrahue" Convegina

About Differentiation Matrices

Demo: Taking derivatives with Vandermonde matrices

Finite Difference Formulas

It is possible to use the process above to find 'canned' formulas for taking derivatives. Suppose we use three points equispaced points (x - h, x, x + h) for interpolation (i.e. a degree-2 polynomial).

- What is the resulting differentiation matrix?What does it tell us for the middle point?

Can we use a similar process to compute (approximate) integrals of a function f?

 $\hat{f}(x) = \alpha_1 (e_1(x) + \dots + \alpha_2 (e_2(x))$ $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx = a, \quad \int_{a}^{b} G(x) dx + \frac{1}{a} \int_{a}^{b} f(x) dx = a, \quad \int_{a}^{b} G(x) dx + \frac{1}{a} \int_{a}^{b} G(x) dx = a, \quad \int_{a}^{b} G(x) dx$ lose of acrowing W = [s'a, was s'a, was & rechor of weight w - a & Va=y

Example: Building a Quadrature Rule

Demo: Computing the Weights in Simpson's Rule

Facts about Quadrature

What does Simpson's rule look like on [0, 1/2]?

What does Simpson's rule look like on [5, 6]?

How accurate is Simpson's rule with n points and functions?

Accuracy with a points Auda
Inkquilden error
$$O(h^{nn})$$

Integrate error $O(h^{n+2})$
Differe 1seden error $O(h^{n})$

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo

Error, Accuracy and Convergence Floating Point

Modeling the World with Arrays

The World in a Vector What can Matrices Do? Graphs

Sparsity

Norms and Errors The 'Undo' Button for Linear Operations: LU Repeating Linear Operations: Eigenvalues and Steady States Eigenvalues: Applications

Low-Rank Approximation Iteration and Convergence

What is linear convergence? quadratic convergence?

About Convergence Rates

Demo: Rates of Convergence

Characterize linear, quadratic convergence in terms of the 'number of accurate digits'.

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo

Error, Accuracy and Convergence Floating Point

Modeling the World with Arrays

The World in a Vector What can Matrices Do? Graphs

Sparsity

Norms and Errors The 'Undo' Button for Linear Operations: LU Repeating Linear Operations: Eigenvalues and Steady States Eigenvalues: Applications

Low-Rank Approximation Solving One Equation

Solving Nonlinear Equations

What is the goal here?

Bisection Method

Assume there is a zero on the interval [a, b] and that f is continuous, perform binary search.

Demo: Bisection Method

What's the rate of convergence? What's the constant?

Newton's Method

Derive Newton's method.

Demo: Newton's method **Demo:** Convergence of Newton's Method

What are some drawbacks of Newton?

Secant Method

What would Newton without the use of the derivative look like?

Demo: Secant Method In-class activity: Nonlinear equations in 1D

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo

Error, Accuracy and Convergence Floating Point

Modeling the World with Arrays

The World in a Vector What can Matrices Do? Graphs

Sparsity

Norms and Errors The 'Undo' Button for Linear Operations: LU Repeating Linear Operations: Eigenvalues and Steady States Eigenvalues: Applications

Low-Rank Approximation Solving Many Equations

Solving Nonlinear Equations

What is the goal here?

Newton's method

What does Newton's method look like in n dimensions?

Newton: Example

Set up Newton's method to find a root of

$$f(x,y) = \left(\begin{array}{c} x+2y-2\\ x^2+4y^2-4 \end{array}\right)$$

Demo: Newton's method in n dimensions

Secant in n dimensions?

What would the secant method look like in n dimensions?

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo

Error, Accuracy and Convergence Floating Point

Modeling the World with Arrays

The World in a Vector What can Matrices Do? Graphs

Sparsity

Norms and Errors The 'Undo' Button for Linear Operations: LU Repeating Linear Operations: Eigenvalues and Steady States Eigenvalues: Applications

Low-Rank Approximation Finding the Best: Optimization in 1D

Optimization in n Dimensions

Optimization

State the problem.

Optimization: What could go wrong?

What are some potential problems in optimization?

Optimization: What is a solution?

How can we tell that we have a (at least local) minimum? (Remember calculus!)

Newton's Method

Let's steal the idea from Newton's method for equation solving: Build a simple version of f and minimize that.

Demo: Newton's method in 1D **In-class activity:** Optimization Methods

Golden Section Search

Would like a method like bisection, but for optimization. In general: No invariant that can be preserved. Need *extra assumption*. Demo: Golden Section Search Proportions

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo

Error, Accuracy and Convergence Floating Point

Modeling the World with Arrays

The World in a Vector What can Matrices Do? Graphs

Sparsity

Norms and Errors The 'Undo' Button for Linear Operations: LU Repeating Linear Operations: Eigenvalues and Steady States Eigenvalues: Applications Low-Rank Approximation

Optimization in n Dimensions

Optimization in n dimensions: What is a solution?

How can we tell that we have a (at least local) minimum? (Remember calculus!)

Steepest Descent

Given a scalar function $f: \mathbb{R}^n \to \mathbb{R}$ at a point x, which way is down?

Demo: Steepest Descent

Newton's method (nD)

What does Newton's method look like in n dimensions?

Demo: Newton's method in n dimensions

Demo: Nelder-Mead Method

Nonlinear Least Squares/Gauss-Newton

What if the f to be minimized is actually a 2-norm?

$$f(x) = \|r(x)\|_2, \qquad r(x) = y - f(x)$$

Demo: Gauss-Newton