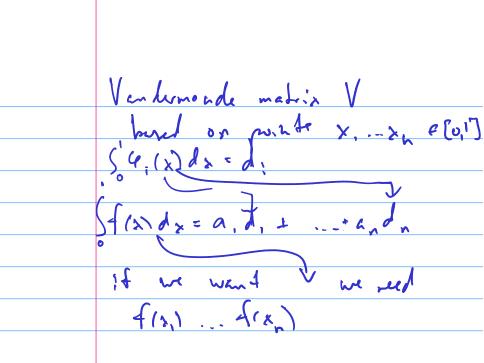
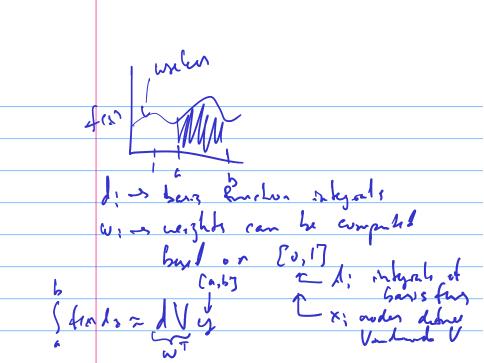
Andrature giver weights from [0,1] evaluate inkgral or (a,b) Error (Simpson's rale) Conveguer Rades Pour Ideation US Ray high bealed que brachir 1, mas Nonthear Solve

Using Quadrature Rules

To estimate an integral over an arbitrary interval [a, b] we can use a quadrature rule with weights derived by integrating over [0, 1], since


$$\int_{a}^{b} f(x)dx = (b-a)\int_{0}^{1} f((b-a)\bar{x}+a)d\bar{x}.$$


Thus, given weights $\mathbf{w} = V^{-T}\mathbf{d}$ computed from integrating *n* basis functions on [0,1] (to get d) and V defined based on points $\bar{x}_1,\ldots,\bar{x}_n\in[0,1]$, we can use the same weights for the above V d= w 11 (x,y) E0,1 integral as

$$\int_{a}^{b} f(x) dx \approx \underbrace{(b-a)}_{\mathbf{w}}^{\mathbf{v}} \mathbf{y}.$$

3 ° 1 . 1.

Above \mathbf{y} corresponds to f evaluated at points $(b-a)\overline{x}_1+a,\ldots,(b-a)\overline{x}_n+a.$

Facts about Quadrature

What does Simpson's rule look like on [0, 1/2]?

$$h: \frac{1}{2}$$
 $\frac{1}{2}$

What does Simpson's rule look like on [5, 6]?

weight shill w

$$y = \begin{bmatrix} f(s) \\ f(s,s) \\ f(s) \end{bmatrix}$$
 ind = w y

How accurate is Simpson's rule with polynomials of degree n?

Supromes only linkyrdom Selander - Selander = O(L^{na2}) as h decrares O((1"2)) devans fars the O((1")) $f'(x) - \hat{f}(x) = O(h^*)$

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo

Error, Accuracy and Convergence Floating Point

Modeling the World with Arrays

The World in a Vector What can Matrices Do? Graphs

Sparsity

Norms and Errors The 'Undo' Button for Linear Operations: LU Repeating Linear Operations: Eigenvalues and Steady States Eigenvalues: Applications Approximate Undo: SVD and Least Squares

SVD: Applications

- Solving Funny-Shaped Linear
- Systems
- Data Fitting
- Norms and Condition
- Numbers
- Low-Rank Approximation

Interpolation

Iteration and Convergence

Solving One Equation Solving Many Equators Finding the Best: Optimization in 1D Optimization in *n* Dimensions

What is linear convergence? quadratic convergence? Ibrative lineer consignee : lecrense error by a constant at every teretron cros at 6th Jeston ek = tek.1 $\lim_{k \to \infty} e_k / e_1^k = C$ Quadratie correspond: square the error for the prenner, ex ~cer,