Quadrature
giver weights from $[0,1]$ evaluate inkgral or $[a, b]$
Error (Simpson's rale)
Convergures Rates

Nonlimar Solve

Using Quadrature Rules

To estimate an integral over an arbitrary interval $[a, b]$ we can use a quadrature rule with weights derived by integrating over $[0,1]$, since

$$
\int_{a}^{b} f(x) d x \underbrace{=}_{\substack{=(b-a) \bar{x}+}}(b-a) \int_{0}^{1} f(\underbrace{(b-a) \bar{x}+a)}) d \bar{x}
$$

Thus, given weights $\mathbf{w}=V^{-T} \mathbf{d}$ computed from integrating n basis functions on $[0,1]$ (to get \mathbf{d}) and V defined based on points $\bar{x}_{1}, \ldots, \bar{x}_{n} \in[0,1]$, we can use the same weights for the above integral as

$$
\int_{a}^{b} f(x) d x \approx \underline{(b-a) \mathbf{w}^{T} \mathbf{y} .} \quad\left(\bigvee_{i} d=w, y \in 0,1\right.
$$

Above y corresponds to f evaluated at points

Vembermonde matrix V busel on puints $x_{1} \ldots x_{h} \in[0,1]$

$$
\begin{aligned}
& \int_{0}^{1} \varphi_{i}(x) d x=d! \\
& \int_{0}^{1} f(x) d x=a_{1} d_{1}+\ldots+a_{n} d_{n}
\end{aligned}
$$

if we want \checkmark we reed $f(x,) \ldots f\left(x_{r}\right)$

$d_{1} \rightarrow$ bears fanidun intyonds
$w_{1} \rightarrow$ weights can be corpunti! busl or $[0,1]$

Facts about Quadrature $\quad \omega=[2 / 3,1 / 3,2 / 3]$
What does Simpson's rule look like on $[0,1 / 2]$?

What does Simpson's rule look like on $[5,6]$?

$$
\begin{aligned}
& \text { we.ghl sill w } \\
& y=\left[\begin{array}{l}
f(3) \\
f(55) \\
f(66)
\end{array}\right] \quad \text { ind }=w^{\top} y
\end{aligned}
$$

How accurate is Simpson's rule with polynomials of degree n ?

Accuracy of Simpson's mule with polgnomed beeis of Ayree n

Interulifion everor or intenal $[a, b]$ wa $b-a=h$

$$
\begin{gathered}
\tilde{f}(x)-f(x)=O\left(h^{n+1}\right) \\
i n \\
i n, h)
\end{gathered}
$$

Simporones cule linteyrator)

$$
\left|\int_{a}^{b} f(\lambda) d \lambda-\int_{c}^{h} \tilde{f}(\lambda) d \lambda\right|=O\left(h^{n+2}\right)
$$

as 1 deeterm $O\left(h^{n+2}\right)$
deavesh futh than $\partial\left(h^{n-1}\right)$

$$
\left|f^{\prime}(x)-\tilde{f^{\prime}}(x)\right|=O\left(h^{n}\right)
$$

M
\#\#

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte
Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays
The World in a Vector
What can Matrices Do?
Graphs
Sparsity
Norms and Errors
The 'Undo' Button for Linear
Operations: LU
Repeating Linear Operations: Eigenvalues and Steady States
Eigenvalues: Applications

Approximate Undo: SVD and
Least Squares
SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition
Numbers
Low-Rank Approximation
Interpolation
Iteration and Convergence

in 1D
Optimization in n Dimensions

What is linear convergence? quadratic convergence? iterative
linear convergence: decrease error by a constant at every deration
error at $t^{\text {th }}$.teston

$$
\begin{aligned}
& e_{k} \simeq \frac{1}{c} e_{k-1} \\
& \lim _{l \rightarrow \infty} e_{k} / e_{1}^{k}=C
\end{aligned}
$$

Quaditi comestrat: square the err form the previn, $e_{6} \approx \frac{1}{C} e_{6}^{2}$

E: Most important advice to future students in CS 357.

F: Rank in interat (high is betto)
(1.) Taylur Expaciorn
(2.) Interpolation
(3) Murte Carlo
(4.) sud

