Quedrature weights Integrals of benis furchors

Outline

Approximate Undo: SVD and Least Squares SVD: Applications Solving Funny-Shaped Linear Systems
Data Fitting
Norms and Condition
Numbers
Low-Rank Approximation
Interpolation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D
Optimization in n Dimensions

Solving Nonlinear Equations

What is the goal here?

given f (N) = 0

f(x) = g f(x) = 4(x) - g

Sohe \$(x) =0

Bisection Method

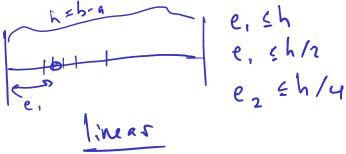
Assume continuos function f has a zero on the interval $\left[a,b\right]$ and

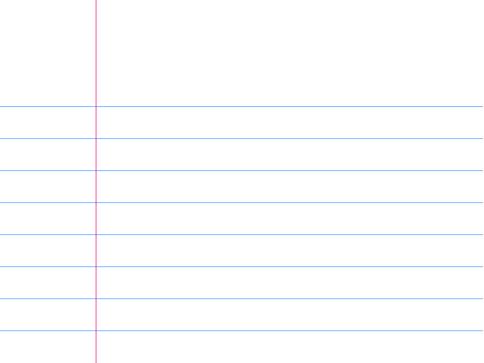
$$\mathsf{sign}(f(a)) = -\mathsf{sign}(f(b)).$$

Perform binary search: check sign of f((a+b)/2) and define new search interval so that ends have opposite sign.

Demo: Bisection Method

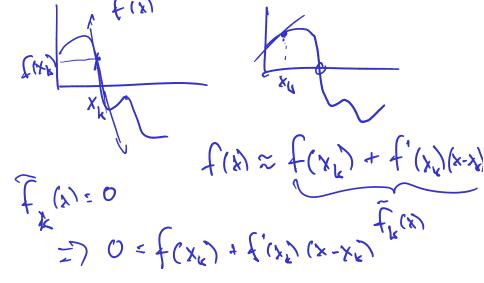
What's the rate of convergence? What's the constant?





Newton's Method

Derive Newton's method.



$$0 = f(x_k) + f'(x_k) \times - f'(x_k) \times k$$

$$x = f(x_k) + f'(x_k) \times k$$

$$x = x_k - f(x_k)$$

$$x = x_k - f(x_k)$$

$$x = x_k - f'(x_k)$$

Demo: Newton's method

Demo: Convergence of Newton's Method

What are some **drawbacks** of Newton?

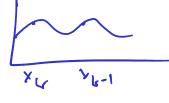
may not comerge stick at local mining or more for away from last ned derivety

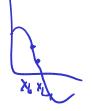
Secant Method

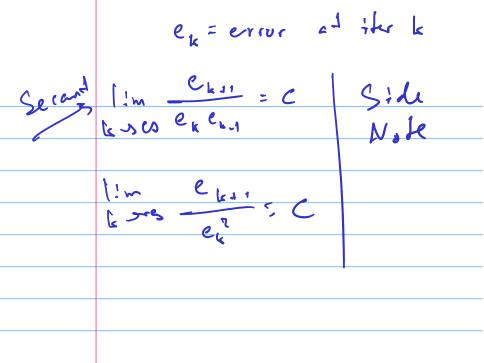
What would Newton without the use of the derivative look like?

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

wand $x_k \propto x_{k-1}$







Secant Method Drawbacks

What are	some	drawbacks	of	Secant?
----------	------	-----------	----	---------

- 2 starting gruns - convergne problem Newton

Demo: Secant Method

In-class activity: Secant Method

+ no derivative

Outline

The World in a Vector Low-Rank Approximation Solving Many Equations

Solving Nonlinear Equations

What is the goal here?

$$f(\vec{x}) = \vec{0}$$

$$f(\vec{x}) = f(\vec{x}) - \vec{0}$$

$$f(\vec{x}) = \begin{cases} f_1(\vec{x}) \\ f_2(\vec{x}) \end{cases} = \begin{cases} f_1(\vec{x}) \\ f_n(\vec{x}) \\ f_n(\vec{x}) \end{cases}$$

Newton's method

What does Newton's method look like in n dimensions?

$$\int_{C} \frac{\partial x^{n}}{\partial x^{n}} = x^{n} - \int_{C} \frac{\partial x^{n}}{\partial x^{n}} dx$$

$$\int_{C} \frac{\partial x^{n}}{\partial x^{n}} dx = \int_{C} \frac{\partial x^{n}}{\partial x^{n}} dx$$

$$\int_{C} \frac{\partial x^{n}}{\partial x^{n}} dx = \int_{C} \frac{\partial x^{n}}{\partial x^{n}} dx$$