Overview
- Error in MC
- RNG
- Errors

Condition number

HW3
\[\frac{\text{Inside}}{\text{Total}} \approx \frac{\pi}{4} \]
Demo: Computing π using Sampling
Demo: Errors in Sampling
The Central Limit Theorem states that with

\[S_N := X_1 + X_2 + \cdots + X_n \]

for the \((X_i)\) independent and identically distributed according to random variable \(X\) with variance \(\sigma^2\), we have that

\[\frac{S_N - NE[X]}{\sqrt{\sigma^2 N}} \to \mathcal{N}(0, 1), \]

i.e. that term approaches the normal distribution. As we increase \(N\), \(\sigma^2\) stays fixed, so the asymptotic behavior of the error is

\[\left| \frac{1}{N} S_N - E[X] \right| = O \left(\frac{1}{\sqrt{N}} \right). \]
Monte Carlo Methods: The Good and the Bad

What are some advantages of MC methods?
- easy to code
- does not suffer from "curse of dim."

What are some disadvantages of MC methods?
- Sad error scaling \((\frac{1}{\sqrt{N}}) \)
- expensive
- No immediate over estimate
- not deterministic \(\leftarrow \) can work around by seeding
Computers and Random Numbers

```c
int getrandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

[from xkcd]

How can a computer make random numbers?

- complicated formula
- hardware random noise
- order "online"
Random Numbers: What do we want?

What properties can ‘random numbers’ have?

- Have a specific distribution
 (e.g. ‘uniform’—each value in given interval is equally likely)
- Real-valued/integer-valued
- Repeatable (i.e. you may ask to exactly reproduce a sequence)
- **Unpredictable**
 - V1: ‘I have no idea what it’s going to do next.’
 - V2: No amount of engineering effort can get me the next number.
- Uncorrelated with later parts of the sequence
 (Weaker: Doesn’t repeat after a short time)
- Usable on parallel computers
What’s a Pseudorandom Number?

Actual randomness seems like a lot of work. How about ‘pseudorandom numbers’?

Idea: Maintain some ‘state’. Every time someone asks for a number:

\[
\text{random_number, new_state} = f(\text{state})
\]

Satisfy:

- ✔️ Distribution
- ✔️ ‘I have no idea what it’s going to do next.’
- ✔️ Repeatable (just save the state)
- ✔️ Typically not easy to use on parallel computers
Demo: Playing around with Random Number Generators
Some Pseudorandom Number Generators

Lots of variants of this idea:

- LC: ‘Linear congruential’ generators \((ax + b) \mod c \)
- MT: ‘Mersenne twister’
- Almost all random number generators you’re likely to find are based on these—Python’s `random` module, `numpy.random`, C’s `rand()`, C’s `rand48()`.
Counter-Based Random Number Generation (CBRNG)

What’s a CBRNG?

Idea: Cryptography has way stronger requirements than RNGs. And the output must ‘look random’.

(Advanced Encryption Standard) AES algorithm:
128 encrypted bits = AES (128-bit plaintext, 128 bit key)

We can treat the encrypted bits as random:
128 random bits = AES (128-bit counter, arbitrary 128 bit key)

- Just use 1, 2, 3, 4, 5, as the counter.
- No quality requirements on counter or key to obtain high-quality random numbers
- Very easy to use on parallel computers
- Often accelerated by hardware, faster than the competition

Demo: Counter-Based Random Number Generation
Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays
 The World in a Vector
 What can Matrices Do?
 Graphs
 Sparsity
Norms and Errors
The ‘Undo’ Button for Linear Operations: LU
LU: Applications
 Linear Algebra Applications
 Interpolation
Repeating Linear Operations: Eigenvalues and Steady States
Eigenvalues: Applications
Approximate Undo: SVD and Least Squares
SVD: Applications
 Solving Funny-Shaped Linear Systems
 Data Fitting
 Norms and Condition Numbers
 Low-Rank Approximation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization in 1D
Optimization in \(n \) Dimensions
Every result we compute in Numerical Methods is inaccurate. What is our model of that error?

\[\text{Approx. result} = \text{true result} + \text{error} \]

Suppose the true answer to a given problem is \(x_0 \), and the computed answer is \(\tilde{x} \). What is the absolute error?

\[\text{abs. error} = \left| \text{Approx. result} - \text{true result} \right| \]

```
  abs. error = | Approx. result - true result |
  ^ false abs. error = | Approx. result |
  | true result |

abs. error = 2
```

```
-1  \quad 10^{-2}
0.1  \quad 10^{-1}
0.2  \quad 10^{-1}
-0.1  \quad 10^{-2}
```
Scene 1

true = 10,000,000
abs. err = 0.2
rel. err = 0.2 / 10,000,000 = small
~ pretty good

Scene 2

true = 0.00001
abs. err = 0.2
rel. err = 0.2 / 0.00001
~ big
\text{true value} = 10 \pm 0.1
Relative Error

What is the relative error?

\[
\frac{|\Delta x|}{|x_0|} = \frac{|x - \tilde{x}|}{|x_0|} = \frac{\text{Abs. error}}{\text{true result}}
\]

Why introduce relative error?

do compare result quality

What is meant by ‘the result has 5 accurate digits’?

true → 12.345 000
approx → 12.345 999 57
rel error = \(8.099 \times 10^{-5} \approx 0.001\)?
"has \(\times \) accurate digits\)

\[\approx \]

\[\text{rel. error} \leq 10^{-x} \]
Why is $|\tilde{x}| - |x_0|$ a bad measure of the error?

If \tilde{x} and x_0 are vectors, how do we measure the error?
Sources of Error

What are the main sources of error in numerical computation?
Establish a relationship between ‘accurate digits’ and rounding error.
Methods f take input x and produce output $y = f(x)$. Input has (relative) error $|\Delta x| / |x|$. Output has (relative) error $|\Delta y| / |y|$.

Q: Did the method make the relative error bigger? If so, by how much?

- **Condition Number**

 \[
 \text{Condition Number} = \frac{\text{rel. error in output}}{\text{rel. error in input}}
 \]

- **Example:**

 \[
 \text{Condition number} = \frac{10^{-1}}{10^{-2}} = 10
 \]
nth-Order Accuracy

Often, *truncation error* is controlled by a parameter h.

Examples:

- distance from expansion center in Taylor expansions
- length of the interval in interpolation

A numerical method is called ‘*nth-order accurate*’ if its truncation error $E(h)$ obeys

$$E(h) = O(h^n).$$