\[x \in (0, 1) \]
\[f(1) = 1 \]
\[\frac{5e^{-10}}{\text{max}} = \text{min} \]
\[1 + (x + y - 4/3) \]

Absoulute error of all pol
Modelling the World with Matrices

Predicting Movie Popularity

Vectors: \(x \) - preferences of friend \(i \)

Goal:

\[
\begin{align*}
A &= \begin{bmatrix}
mov.1 & \cdots & mov.\, n \end{bmatrix} \\

\hat{y} &= \sum_{i=1}^{n} Ax^{(i)}
\end{align*}
\]
\[Y = A \cdot X \]

Part 1: given \(A, X \)

\[y_i = \sum_{j=1}^{n} Y_{ij} \]

Part 2: given \(A, Y \)

\[A_{ij} = j \text{th attribute of the } i \text{th movie} \]

\[X_{jk} = \text{preference of movie } k \text{ with respect to attribute } j \]

la. solve
Outline

Python, Numpy, and Matplotlib
Making Models with Polynomials
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point
Modeling the World with Arrays
 The World in a Vector
 What can Matrices Do?
 Graphs
 Sparsity
Norms and Errors
The ‘Undo’ Button for Linear Operations: LU
LU: Applications
 Linear Algebra Applications
 Interpolation
Repeating Linear Operations: Eigenvalues and Steady States
Eigenvalues: Applications
Approximate Undo: SVD and Least Squares
SVD: Applications
 Solving Funny-Shaped Linear Systems
 Data Fitting
 Norms and Condition Numbers
 Low-Rank Approximation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization in 1D
Optimization in n Dimensions
Graphs as Matrices

How could this (directed) graph be written as a matrix?

\[A = \begin{bmatrix}
1 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
\end{bmatrix}^T \]

\[A_{ij} = 1 \text{ if } \exists (i,j) \in E \]

\[G = (V, E) \]
Matrices for Graph Traversal: Technicalities

What is the general rule for turning a graph into a matrix?

\[A_{ji} = 1 \text{ if there is an edge from } i \text{ to } j \]

What does the matrix for an undirected graph look like?

Symmetric

How could we turn a weighted graph (i.e. one where the edges have weights—maybe ‘pipe widths’) into a matrix?

\[A_{ji} \text{ is the weight of edge } i \rightarrow j \]
If we multiply a graph matrix by the ith unit vector, what happens?

$$A \left(\begin{array} {c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) = ? \times \left(\begin{array} {c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)$$
Demo: Matrices for Graph Traversal
Python, Numpy, and Matplotlib
Making Models with Polynomials
Making Models with Monte Carlo
Error, Accuracy and Convergence
Floating Point

Modeling the World with Arrays
The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear Operations: LU
LU: Applications
Linear Algebra Applications
Interpolation

Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications
Approximate Undo: SVD and Least Squares
SVD: Applications
Solving Funny-Shaped Linear Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation

Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization in 1D
Optimization in n Dimensions
Storing Sparse Matrices

Some types of matrices (including graph matrices) contain many zeros.
Storing all those zero entries is wasteful.
How can we store them so that we avoid storing tons of zeros?
How can we store a sparse matrix using just arrays? For example:

$$
\begin{pmatrix}
0 & 2 & 0 & 3 \\
1 & 4 & & 5 \\
6 & & 7 \\
\end{pmatrix}
$$