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polling data

Suppose we are given the data {(x1, y1), ..., (xn, yn)} and we want to
find a curve that best fits the data.
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fitting curves
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fitting a line

Given n data points {(x1, yi), ..., (xn, yn)} find a and b such that

yi = axi + b ∀i ∈ [1,n].

In matrix form, find a and b that solvesx1 1
...

...

xn 1

[a
b

]
=

y1
...

yn


Systems with more equations than unknowns are called
overdetermined
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overdetermined systems

If A is an m × n matrix, then in general, an m × 1 vector b may not lie
in the column space of A . Hence Ax = b may not have an exact
solution.

Definition
The residual vector is

r = b − Ax.

The least squares solution is given by minimizing the square of the
residual in the 2-norm.
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normal equations

Writing r = (b − Ax) and substituting, we want to find an x that
minimizes the following function

φ(x) = ||r ||22 = rT r = (b − Ax)T (b − Ax) = bT b − 2xT AT b + xT AT Ax

From calculus we know that the minimizer occurs where ∇φ(x) = 0.

The derivative is given by

∇φ(x) = −2AT b + 2AT Ax = 0

Definition
The system of normal equations is given by

AT Ax = AT b.
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solving normal equations

Since the normal equations forms a symmetric system, we can solve
by computing the Cholesky factorization

AT A = LLT

and solving Ly = AT b and LT x = y.

Consider

A =

1 1
ε 0
0 ε


where 0 < ε <

√
εmach . The normal equations for this system is given

by

AT A =

[
1 + ε2 1

1 1 + ε2

]
=

[
1 1
1 1

]
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normal equations: conditioning

The normal equations tend to worsen the condition of the matrix.

Theorem

cond(AT A) = (cond(A))2

1 >> A = rand(10,10);

2 >> cond(A)

3 43.4237

4 >> cond(A’*A)

5 1.8856e+03

How can we solve the least squares problem without squaring the
condition of the matrix?
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other approaches

• QR factorization.
• For A ∈ Rm×n, factor A = QR where

• Q is an m×m orthogonal matrix
• R is an m× n upper triangular matrix (since R is an m× n upper

triangular matrix we can write R =

[
R ′

0

]
where R is n× n upper

triangular and 0 is the (m − n)× n matrix of zeros)

• SVD - singular value decomposition
• For A ∈ Rm×n, factor A = USVT where

• U is an m×m orthogonal matrix
• V is an n× n orthogonal matrix
• S is an m× n diagonal matrix whose elements are the singular

values.
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orthogonal matrices

Definition
A matrix Q is orthogonal if

QT Q = QQT = I

Orthogonal matrices preserve the Euclidean norm of any vector v,

||Qv ||22 = (Qv)T (Qv) = vT QT Qv = vT v = ||v ||22.
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using qr factorization for least squares

Now that we know orthogonal matrices preserve the euclidean norm,
we can apply orthogonal matrices to the residual vector without
changing the norm of the residual.

‖r‖2
2 = ‖b − Ax‖2

2 =

∥∥∥∥b − Q
[
R
0

]
x
∥∥∥∥2

2
=

∥∥∥∥QT b − QT Q
[
R
0

]
x
∥∥∥∥2

2
=

∥∥∥∥QT b −

[
R
0

]
x
∥∥∥∥2

2

If QT b =

[
c1

c2

]
and x =

[
x1

x2

]
then

∥∥∥∥QT b −

[
R
0

]
x
∥∥∥∥2

2
=

∥∥∥∥[c1

c2

]
−

[
Rx1

0

]∥∥∥∥2

2
=

∥∥∥∥[c1 − Rx1

c2

]∥∥∥∥2

2
= ||c1 − Rx1||

2
2 + ||c2||

2
2

Hence the least squares solution is given by solving[
R
0

][
x1

x2

]
=

[
c1

c2

]
. We can solve Rx1 = c1 using back substitution and

the residual is ||r ||2 = ||c2||2.
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gram-schmidt orthogonalization

One way to obtain the QR factorization of a matrix A is by
Gram-Schmidt orthogonalization.

We are looking for a set of orthogonal vectors q that span the range
of A .

For the simple case of 2 vectors {a1,a2}, first normalize a1 and obtain

q1 =
a1

||a1||
.

Now we need q2 such that qT
1 q2 = 0 and q2 = a2 + cq1. That is,

R(q1,q2) = R(a1,a2)

Enforcing orthogonality gives:

qT
1 q2 = 0 = qT

1 a2 + cqT
1 q1

12



gram-schmidt orthogonalization

qT
1 q2 = 0 = qT

1 a2 + cqT
1 q1

Solving for the constant c.

c = −
qT

1 a2

qT
1 q1

reformulating q2 gives.

q2 = a2 −
qT

1 a2

qT
1 q1

q1

Adding another vector a3 and we have for q3,

q3 = a3 −
qT

2 a3

qT
2 q2

q2 −
qT

1 a3

qT
1 q1

q1

Repeating this idea for n columns gives us Gram-Schmidt
orthogonalization.
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gram-schmidt orthogonalization

Since R is upper triangular and A = QR we have

a1 = q1r11

a2 = q1r12 + q2r22

... =
...

an = q1r1n + q2r2n + ...+ qnrnn

From this we see that rij =
qT

i aj

qT
i qi

, j > i
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orthogonal projection

The orthogonal projector onto the range of q1 can be written:

q1qT
1

qT
1 q1

. Application of this operator to a vector a orthogonally projects a
onto q1. If we subtract the result from a we are left with a vector that
is orthogonal to q1.

qT
1 (I −

q1qT
1

qT
1 q1

)a = 0
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gram-schmidt orthogonalization

1 function [Q,R] = gs_qr (A)

2

3 m = size(A,1);

4 n = size(A,2);

5

6 for i = 1:n

7 R(i,i) = norm(A(:,i),2);

8 Q(:,i) = A(:,i)./R(i,i);

9 for j = i+1:n

10 R(i,j) = Q(:,i)’ * A(:,j);

11 A(:,j) = A(:,j) - R(i,j)*Q(:,i);

12 end

13 end

14

15 end

16



using svd for least squares

Recall that a singular value decomposition is given by

A =


...

...
...

u1 . . . um
...

...
...




σ1
. . .

σr
. . .

0


. . . vT

1 . . .

. . .
... . . .

. . . vT
n . . .



where σi are the singular values.
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using svd for least squares

Assume that A has rank k (and hence k nonzero singular values σi)
and recall that we want to minimize

||r ||22 = ||b − Ax ||22.

Substituting the SVD for A we find that

||r ||22 = ||b − Ax ||22 = ||b − USVT x ||22

where U and V are orthogonal and S is diagonal with k nonzero
singular values.

||b − USVT x ||22 = ||UT b − UT USVT x ||22 = ||UT b − SVT x ||22
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using svd for least squares

Let c = UT b and y = VT x (and hence x = Vy) in ||UT b −SVT x ||22. We
now have

||r ||22 = ||c − Sy ||22

Since S has only k nonzero diagonal elements, we have

||r ||22 =

k∑
i=1

(ci − σiyi)
2 +

n∑
i=k+1

c2
i

which is minimized when yi =
ci
σi

for 1 6 i 6 k .

19



using svd for least squares

Theorem

Let A be an m × n matrix of rank r and let A = USVT , the singular
value decomposition. The least squares solution of the system Ax = b
is

x =

r∑
i=1

(σ−1
i ci)vi

where ci = uT
i b.
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