solving systems

L. Olson

Department of Computer Science
University of Illinois at Urbana-Champaign

goals for today.

- Identify why our basic GE method is "naive": identify where the errors come from?
- division by zero, near-zero
- Propose strategies to eliminate the errors
- partial pivoting, complete pivoting, scaled partial pivoting
- Investigate the cost: does pivoting cost too much?
- Try to answer "How accurately can we solve a system with or without pivoting?"
- Analysis tools: norms, condition number, ...

why is our basic ge "naive"?

Example

$$
A=\left[\begin{array}{lll}
0 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

Example

$$
A=\left[\begin{array}{ccc}
1 e-10 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

the need for pivoting

Solve:

$$
A=\left[\begin{array}{rrrr}
2 & 4 & -2 & -2 \\
1 & 2 & 4 & -3 \\
-3 & -3 & 8 & -2 \\
-1 & 1 & 6 & -3
\end{array}\right] \quad b=\left[\begin{array}{r}
-4 \\
5 \\
7 \\
7
\end{array}\right]
$$

Note that there is nothing "wrong" with this system. A is full rank. The solution exists and is unique.

Form the augmented system.

$$
\left[\begin{array}{rrrr|r}
2 & 4 & -2 & -2 & -4 \\
1 & 2 & 4 & -3 & 5 \\
-3 & -3 & 8 & -2 & 7 \\
-1 & 1 & 6 & -3 & 7
\end{array}\right]
$$

the need for pivoting

Subtract $1 / 2$ times the first row from the second row, add $3 / 2$ times the first row to the third row, add $1 / 2$ times the first row to the fourth row.

The result of these operations is:

$$
\left[\begin{array}{rrrr|r}
2 & 4 & -2 & -2 & -4 \\
0 & 0 & 5 & -2 & 7 \\
0 & 3 & 5 & -5 & 1 \\
0 & 3 & 5 & -4 & 5
\end{array}\right]
$$

The next stage of Gaussian elimination will not work because there is a zero in the pivot location, \tilde{a}_{22}.

the need for pivoting

Swap second and fourth rows of the augmented matrix.

$$
\left[\begin{array}{rrrr|r}
2 & 4 & -2 & -2 & -4 \\
0 & 3 & 5 & -4 & 5 \\
0 & 3 & 5 & -5 & 1 \\
0 & 0 & 5 & -2 & 7
\end{array}\right]
$$

Continue with elimination: subtract (1 times) row 2 from row 3.

$$
\left[\begin{array}{rrrr|r}
2 & 4 & -2 & -2 & -4 \\
0 & 3 & 5 & -4 & 5 \\
0 & 0 & 0 & -1 & -4 \\
0 & 0 & 5 & -2 & 7
\end{array}\right]
$$

the need for pivoting

Another zero has appear in the pivot position. Swap row 3 and row 4.

$$
\left[\begin{array}{rrrr|r}
2 & 4 & -2 & -2 & -4 \\
0 & 3 & 5 & -4 & 5 \\
0 & 0 & 5 & -2 & 7 \\
0 & 0 & 0 & -1 & -4
\end{array}\right]
$$

The augmented system is now ready for backward substitution.

another example

$$
\left[\begin{array}{ll}
\varepsilon & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Example

With Naive GE,

$$
\left[\begin{array}{ccc}
\varepsilon & 1 \\
0 & \left(1-\frac{1}{\varepsilon}\right)
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
X_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
2-\frac{1}{\varepsilon}
\end{array}\right]
$$

Solving for x_{1} and x_{2} we get

$$
\begin{aligned}
& x_{2}=\frac{2-1 / \varepsilon}{1-1 / \varepsilon} \\
& x_{1}=\frac{1-x_{2}}{\varepsilon}
\end{aligned}
$$

For $\varepsilon \approx 10^{-20}, x_{1} \approx 0, x_{2} \approx 1$

pivoting strategies

Partial Pivoting: Exchange only rows

- Exchanging rows does not affect the order of the x_{i}
- For increased numerical stability, make sure the largest possible pivot element is used. This requires searching in the partial column below the pivot element.
- Partial pivoting is usually sufficient.

partial pivoting

To avoid division by zero, swap the row having the zero pivot with one of the rows below it.

To minimize the effect of roundoff, always choose the row that puts the largest pivot element on the diagonal, i.e., find i_{p} such that $\left|a_{i, ~}, i\right|=\max \left(\left|a_{k, i}\right|\right)$ for $k=i, \ldots, n$

partial pivoting: usually sufficient, but not always

- Partial pivoting is usually sufficient
- Consider

$$
\left[\begin{array}{rr|r}
2 & 2 c & 2 c \\
1 & 1 & 2
\end{array}\right]
$$

With Partial Pivoting, the first row is the pivot row:

$$
\left[\begin{array}{rr|r}
2 & 2 c & 2 c \\
0 & 1-c & 2-c
\end{array}\right]
$$

and for large c :

$$
\left[\begin{array}{rr|r}
2 & 2 c & 2 c \\
0 & -c & -c
\end{array}\right]
$$

so that $y=0$ and $x=1$. (exact is $x=y=1$)

- The pivot is selected as the largest in the column, but it should be the largest relative to the full submatrix.

more pivoting strategies

Full (or Complete) Pivoting: Exchange both rows and columns

- Column exchange requires changing the order of the x_{i}
- For increased numerical stability, make sure the largest possible pivot element is used. This requires searching in the pivot row, and in all rows below the pivot row, starting the pivot column.
- Full pivoting is less susceptible to roundoff, but the increase in stability comes at a cost of more complex programming (not a problem if you use a library routine) and an increase in work associated with searching and data movement.

full pivoting

scaled partial pivoting

We simulate full pivoting by using a scale with partial pivoting.

- pick pivot element as the largest relative entry in the column (relative to the other entries in the row)
- do not swap, just keep track of the order of the pivot rows
- call this vector $\ell=\left[\ell_{1}, \ldots, \ell_{n}\right]$.

spp process

1. Determine a scale vector \mathbf{s}. For each row

$$
s_{i}=\max _{1 \leqslant j \leqslant n}\left|a_{i j}\right|
$$

2. initialize $\ell=\left[\ell_{1}, \ldots, \ell_{n}\right]=[1, \ldots, n]$.
3. select row j to be the row with the largest ratio

$$
\frac{\left|a_{\ell_{i} 1}\right|}{s_{\ell_{i}}} \quad 1 \leqslant i \leqslant n
$$

4. swap ℓ_{j} with ℓ_{1} in ℓ
5. Now we need $n-1$ multipliers for the first column:

$$
m_{1}=\frac{a_{\ell_{1} 1}}{a_{\ell_{1} 1}}
$$

6. So the index to the rows are being swapped, NOT the actual row vectors which would be expensive
7. finally use the multiplier m_{1} times row ℓ_{1} to subtract from rows ℓ_{i} for $2 \leqslant i \leqslant n$

spp process continued

1. For the second column in forward elimination, we select row j that yields the largest ratio of

$$
\frac{\left|a_{\ell_{i}, 2}\right|}{s_{\ell_{i}}} \quad 2 \leqslant i \leqslant n
$$

2. swap ℓ_{j} with ℓ_{2} in ℓ
3. Now we need $n-2$ multipliers for the second column:

$$
m_{2}=\frac{a_{\ell_{i}, 2}}{a_{\ell_{2} 2}}
$$

4. finally use the multiplier m_{2} times row ℓ_{2} to subtract from rows ℓ_{i} for $3 \leqslant i \leqslant n$
5. the process continues for row k
6. note: scale factors are not updated

an example

Consider

$$
\left[\begin{array}{ccc}
2 & 4 & -2 \\
1 & 3 & 4 \\
5 & 2 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
6 \\
-1 \\
2
\end{array}\right]
$$

back substitution. . .

1. The first equation corresponds to the last index ℓ_{n} :

$$
a_{\ell_{n} n} x_{n}=b_{\ell_{n}} \Rightarrow x_{n}=\frac{b_{\ell_{n}}}{a_{\ell_{n} n}}
$$

2. The second equation corresponds to the second to last index ℓ_{n-1} :

$$
x_{n-1}=\frac{1}{a_{\ell_{n-1} n-1}}\left(b_{\ell_{n-1}}-a_{\ell_{n-1} n} x_{n}\right)
$$

the algorithms

Listing 1: (forward) GE with SPP

```
Initialize \ell=[1,\ldots,n]
Set s to be the max of rows
for k=1 to n
    rmax = 0
    for i=k to n
        r= |a a\mp@subsup{\ell}{i}{}k
        if(r>rmax)
            rmax =r
            j=i
    end
    swap }\mp@subsup{\ell}{j}{}\mathrm{ and }\mp@subsup{\ell}{k}{
    for i=k+1 to n
        xmult = a alik
        a}\mp@subsup{\ell}{\mp@subsup{\ell}{ik}{}}{}=xmul
        for j=k+1 to n
            a alij
        end
    end
end
```


the algorithms

Note: the multipliers are stored in the location $a_{\ell_{i} k}$ in the text

```
for k=1 to n-1
    for i=k+1 to n
        b}\mp@subsup{\ell}{\mp@subsup{\ell}{i}{}}{}=\mp@subsup{b}{\mp@subsup{\ell}{i}{}}{}-\mp@subsup{a}{\mp@subsup{\ell}{i}{}k}{}\mp@subsup{b}{\mp@subsup{\ell}{k}{}}{
    end
end
xn}=\mp@subsup{b}{\mp@subsup{\ell}{n}{}}{}/\mp@subsup{a}{\mp@subsup{\ell}{n}{}n}{
for i=n-1 down to 1
    sum= b bl
    for j=i+1 to n
        sum =sum - a}\mp@subsup{\ell}{\mp@subsup{\ell}{i}{}}{}\mp@subsup{x}{j}{
        end
end
```

Listing 2: (back solve) GE with SPP

geometric interpretation of singularity

Consider a 2×2 system describing two lines that intersect

$$
\begin{aligned}
& y=-2 x+6 \\
& y=\frac{1}{2} x+1
\end{aligned}
$$

The matrix form of this equation is

$$
\left[\begin{array}{cc}
2 & 1 \\
-1 / 2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
6 \\
1
\end{array}\right]
$$

The equations for two parallel but not intersecting lines are

$$
\left[\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
6 \\
5
\end{array}\right]
$$

Here the coefficient matrix is singular $(\operatorname{rank}(A)=1)$, and the system is inconsistent

geometric interpretation of singularity

The equations for two parallel and coincident lines are

$$
\left[\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
6 \\
6
\end{array}\right]
$$

The equations for two nearly parallel lines are

$$
\left[\begin{array}{cc}
2 & 1 \\
2+\delta & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
6 \\
6+\delta
\end{array}\right]
$$

geometric interpretation of singularity

effect of perturbations to b

Consider the solution of a 2×2 system where

$$
b=\left[\begin{array}{c}
1 \\
2 / 3
\end{array}\right]
$$

One expects that the exact solutions to

$$
A x=\left[\begin{array}{c}
1 \\
2 / 3
\end{array}\right] \quad \text { and } \quad A x=\left[\begin{array}{c}
1 \\
0.6667
\end{array}\right]
$$

will be different. Should these solutions be a lot different or a little different?

norms

Vectors:

$$
\begin{aligned}
& \|x\|_{p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\ldots+\left|x_{n}\right|^{p}\right)^{1 / p} \\
& \|x\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|=\sum_{i=1}^{n}\left|x_{i}\right| \\
& \|x\|_{\infty}=\max \left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right)=\max _{i}\left(\left|x_{i}\right|\right)
\end{aligned}
$$

Matrices:

$$
\begin{aligned}
\|A\| & =\max _{x \neq 0} \frac{\|A x\|}{\|x\|} \\
\|A\|_{p} & =\max _{x \neq 0} \frac{\|A x\|_{p}}{\|x\|_{p}} \\
\|A\|_{1} & =\max _{1 \leqslant j \leqslant n} \sum_{i=1}^{m}\left|a_{i j}\right| \\
\|A\|_{\infty} & =\max _{1 \leqslant i \leqslant m} \sum_{j=1}^{n}\left|a_{i j}\right|
\end{aligned}
$$

effect of perturbations to b

Perturb b with δb such that

$$
\frac{\|\delta b\|}{\|b\|} \ll 1
$$

The perturbed system is

$$
A\left(x+\delta x_{b}\right)=b+\delta b
$$

The perturbations satisfy

$$
A \delta x_{b}=\delta b
$$

Analysis shows (see next two slides for proof) that

$$
\frac{\left\|\delta x_{b}\right\|}{\|x\|} \leqslant\|A\|\left\|A^{-1}\right\| \frac{\|\delta b\|}{\|b\|}
$$

Thus, the effect of the perturbation is small only if $\|A\|\left\|A^{-1}\right\|$ is small.

$$
\frac{\left\|\delta x_{b}\right\|}{\|x\|} \ll 1 \quad \text { only if } \quad\|A\|\left\|A^{-1}\right\| \sim 1
$$

effect of perturbations to b (proof)

Let $x+\delta x_{b}$ be the exact solution to the perturbed system

$$
\begin{equation*}
A\left(x+\delta x_{b}\right)=b+\delta b \tag{1}
\end{equation*}
$$

Expand

$$
A x+A \delta x_{b}=b+\delta b
$$

Subtract $A x$ from left side and b from right side since $A x=b$

$$
A \delta x_{b}=\delta b
$$

Left multiply by A^{-1}

$$
\begin{equation*}
\delta x_{b}=A^{-1} \delta b \tag{2}
\end{equation*}
$$

effect of perturbations to b (proof, p. 2)

Take norm of equation (2)

$$
\left\|\delta x_{b}\right\|=\left\|A^{-1} \delta b\right\|
$$

Applying consistency requirement of matrix norms

$$
\begin{equation*}
\|\delta x\| \leqslant\left\|A^{-1}\right\|\|\delta b\| \tag{3}
\end{equation*}
$$

Similarly, $A x=b$ gives $\|b\|=\|A x\|$, and

$$
\begin{equation*}
\|b\| \leqslant\|A\|\|x\| \tag{4}
\end{equation*}
$$

Rearrangement of equation (4) yields

$$
\begin{equation*}
\frac{1}{\|x\|} \leqslant \frac{\|A\|}{\|b\|} \tag{5}
\end{equation*}
$$

effect of perturbations to b (proof)

Multiply Equation (4) by Equation (3) to get

$$
\begin{equation*}
\frac{\left\|\delta x_{b}\right\|}{\|x\|} \leqslant\|A\|\left\|A^{-1}\right\| \frac{\|\delta b\|}{\|b\|} \tag{6}
\end{equation*}
$$

Summary:

If $x+\delta x_{b}$ is the exact solution to the perturbed system

$$
A\left(x+\delta x_{b}\right)=b+\delta b
$$

then

$$
\frac{\left\|\delta x_{b}\right\|}{\|x\|} \leqslant\|A\|\left\|A^{-1}\right\| \frac{\|\delta b\|}{\|b\|}
$$

effect of perturbations to a

Perturb A with δA such that

$$
\frac{\|\delta A\|}{\|A\|} \ll 1
$$

The perturbed system is

$$
(A+\delta A)\left(x+\delta x_{A}\right)=b
$$

Analysis shows that

$$
\frac{\left\|\delta x_{A}\right\|}{\left\|x+\delta x_{A}\right\|} \leqslant\|A\|\left\|A^{-1}\right\| \frac{\|\delta A\|}{\|A\|}
$$

Thus, the effect of the perturbation is small only if $\|A\|\left\|A^{-1}\right\|$ is small.

$$
\frac{\left\|\delta x_{A}\right\|}{\left\|x+\delta x_{A}\right\|} \ll 1 \quad \text { only if } \quad\|A\|\left\|A^{-1}\right\| \sim 1
$$

effect of perturbations to both a and b

Perturb both A with δA and b with δb such that

$$
\frac{\|\delta A\|}{\|A\|} \ll 1 \quad \text { and } \quad \frac{\|\delta b\|}{\|b\|} \ll 1
$$

The perturbation satisfies

$$
(A+\delta A)(x+\delta x)=b+\delta b
$$

Analysis shows that

$$
\frac{\|\delta x\|}{\|x+\delta x\|} \leqslant \frac{\|A\|\left\|A^{-1}\right\|}{1-\|A\|\left\|A^{-1}\right\| \frac{\|\delta A\|}{\|A\|}}\left[\frac{\|\delta A\|}{\|A\|}+\frac{\|\delta b\|}{\|b\|}\right]
$$

Thus, the effect of the perturbation is small only if $\|A\|\left\|A^{-1}\right\|$ is small.

$$
\frac{\|\delta x\|}{\|x+\delta x\|} \ll 1 \quad \text { only if } \quad\|A\|\left\|A^{-1}\right\| \sim 1
$$

condition number of a

The condition number

$$
\kappa(A) \equiv\|A\|\left\|A^{-1}\right\|
$$

indicates the sensitivity of the solution to perturbations in A and b.
The condition number can be measured with any p-norm.
The condition number is always in the range

$$
1 \leqslant \kappa(A) \leqslant \infty
$$

- $k(A)$ is a mathematical property of A
- Any algorithm will produce a solution that is sensitive to perturbations in A and b if $\kappa(A)$ is large.
- In exact math a matrix is either singular or non-singular. $\kappa(A)=\infty$ for a singular matrix
- $k(A)$ indicates how close A is to being numerically singular.
- A matrix with large k is said to be ill-conditioned

computational stability

In Practice, applying Gaussian elimination with partial pivoting and back substitution to $A x=b$ gives the exact solution, \hat{x}, to the nearby problem

$$
(A+E) \hat{x}=b \quad \text { where } \quad\|E\|_{\infty} \leqslant \varepsilon_{m}\|A\|_{\infty}
$$

Gaussian elimination with partial pivoting and back substitution "gives exactly the right answer to nearly the right question."

- Trefethen and Bau

computational stability

An algorithm that gives the exact answer to a problem that is near to the original problem is said to be backward stable. Algorithms that are not backward stable will tend to amplify roundoff errors present in the original data. As a result, the solution produced by an algorithm that is not backward stable will not necessarily be the solution to a problem that is close to the original problem.

Gaussian elimination without partial pivoting is not backward stable for arbitrary A.

If A is symmetric and positive definite, then Gaussian elimination without pivoting in backward stable.

the residual

Let \hat{x} be the numerical solution to $A x=b . \hat{x} \neq x$ (x is the exact solution) because of roundoff.

The residual measures how close \hat{x} is to satisfying the original equation

$$
r=b-A \hat{x}
$$

It is not hard to show that

$$
\frac{\|\hat{x}-x\|}{\|\hat{x}\|} \leqslant \kappa(A) \frac{\|r\|}{\|b\|}
$$

Small $\|r\|$ does not guarantee a small $\|\hat{x}-x\|$.
If $\kappa(A)$ is large the \hat{x} returned by Gaussian elimination and back substitution (or any other solution method) is not guaranteed to be anywhere near the true solution to $A x=b$.

rules of thumb

- Applying Gaussian elimination with partial pivoting and back substitution to $A x=b$ yields a numerical solution \hat{x} such that the residual vector $r=b-A \hat{x}$ is small even if the $k(A)$ is large.
- If A and b are stored to machine precision ε_{m}, the numerical solution to $A x=b$ by any variant of Gaussian elimination is correct to d digits where

$$
d=\left|\log _{10}\left(\varepsilon_{m}\right)\right|-\log _{10}(\kappa(A))
$$

rules of thumb

$$
d=\left|\log _{10}\left(\varepsilon_{m}\right)\right|-\log _{10}(\kappa(A))
$$

Example:

Computations have $\varepsilon_{m} \approx 2.2 \times 10^{-16}$ in IEEE double precision. For a system with $\kappa(A) \sim 10^{10}$ the elements of the solution vector will have

$$
\begin{aligned}
d & =\left|\log _{10}\left(2.2 \times 10^{-16}\right)\right|-\log _{10}\left(10^{10}\right) \\
& =16-11 \\
& =5
\end{aligned}
$$

correct (decimal) digits

summary of limits to numerical solution of $a x=b$

1. $k(A)$ indicates how close A is to being numerically singular
2. If $\kappa(A)$ is "large", A is ill-conditioned and even the best numerical algorithms will produce a solution, \hat{x} that cannot be guaranteed to be close to the true solution, x
3. In practice, Gaussian elimination with partial pivoting and back substitution produces a solution with a small residual

$$
r=b-A \hat{x}
$$

even if $k(A)$ is large.

