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objectives

• Create a stochastic matrix (or Markov matrix) that represents the
probability of moving from one state to the next

• Establish properties of the Markov Matrix

• Find the steady state of a stochastic matrix

• Relate the steady state to an eigenvecture

• Find important eigenvectors with the Power Method
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random transitions

• Given a system of “states“, we want to model the transition from
state to state over time.

• Let n be the number of states

• So at time k the system is represented by xk ∈ Rn.

• x(i)
k is the probability of being in state i at time k

Definition
A probability vector is a vector of positive entries that sum to 1.0.
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markov chains

Definition
A Markov matrix is a square matrix M with columns that are probability
vectors. So the entries of M are positive and the column sums are 1.0.

Definition
A Markov Chain is a sequence of probability vectors x0, x1, . . . , xk , . . .

such that
xk+1 = Mxk

for some Markov Matrix M
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markov chains

• Does a steady-state exist?

• Does a steady state depend on the initial state?

• Will xk+1 be a probability vector if xk is a probability vector?

• Is the steady state unique?
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markov theory

Theorem
Let M be a Markov Matrix. Then there is a vector x , 0 such that
Mx = x.

Proof?

• MT is singular. Why?

• So there is an x such that MT x = x

• or so that (MT − I)x = 0

• Thus M − I is singular. Why?
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goal

• Find x = Ax and the elements of x are the probability vector
(Basketball Ranking, Google Page Rank, etc).
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power method

Suppose that A is n × n and that the eigenvalues are ordered:

|λ1| > |λ2| > |λ3| > · · · > |λn |

Assuming A is nonsingular, we have a linearly independent set of vi

such that Avi = λivi .

Goal
Computing the value of the largest (in magnitude) eigenvalue, λ1.
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power method

Take a guess at the associated eigenvector, x0. We know

x(0) = c1v1 + · · ·+ cnvn

Since the guess was random, start with all cj = 1:

x(0) = v1 + · · ·+ vn

Then compute

x(1) = Ax(0)

x(2) = Ax(1)

x(3) = Ax(2)

...

x(k+1) = Ax(k)
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power method

Or x(k) = A k x(0). Or

x(k) = A k x(0)

= A k v1 + · · ·+ A k vn

= λk
1v1 + . . . λk

nvn

And this can be written as

x(k) = λk
1

(
v1 +

(
λ2

λ1

)k

v2 + · · ·+
(
λn

λ1

)k

vn

)

So as k →∞, we are left with

x(k) → λk v1
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the power method (with normalization)

1 for k = 1 to kmax
2 y = Ax
3 r = φ(y)/φ(x)
4 x = y/‖y‖∞

• often φ(x) = x1 is sufficient

• r is an estimate of the eigenvalue; x the eigenvector
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inverse power method

• We now want to find the smallest eigenvalue

• Av = λv ⇒ A−1v = 1
λ

v

• So “apply” power method to A−1 (assuming a distinct smallest
eigenvalue)

• x(k+1) = A−1x(k)

• Easier with A = LU

• Update RHS and backsolve with U:

Ux(k+1) = L−1x(k)
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theory

Theorem
Perron-Frobenius If M is a Markov matrix with positive entries, then M
has a unique steady-state vector x.

Theorem

Perron-Frobenius Corollary Given an initial state x0, then xk = Mk x0

converges to x.

13



pagerank

Example
Problem: Consider n linked webpages. Rank them.

• Let x1, . . . , xn > 0 represent importance
• A link to a page increases the perceived importance of a

webpage

Example
Try n = 4.

• page 1: 2,3,4

• page 2: 3,4

• page 3: 1

• page 4: 1,3
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page rank

First attempt

• Let xk be the number of links to page k

• Problem: a link from an important page like The NY Times has
no more weight than lukeo.cs.illinois.edu

15



page rank

Second attempt

• Let xk be the sum of importance scores of all pages that link to
page k

• Problem: a webpage has more influence simply by having more
outgoing links

• Problem: the linear system is trivial (oops!)
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page rank

Third attempt (Brin/Page ’90s)

• Let nj be the number of outgoing links on page j

• Let
xk =

∑
j linking to k

xj

nj

• The influence of a page is its importance. It is split evenly to the
pages it links to.

Example
Let A be an n × n matrix as

Aij =

{
1/nj if page j links to page i

0 otherwise
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page rank

• Sum of column j is nj/nj = 1, so A is a Markov Matrix

• Problem: does not guarantee a unique x s.t. Ax = x

• Brin-Page: Use instead

A ← 0.85A + 0.15

• Still a Markov Matrix

• Now has all positive entries

• Guarantees a unique solution
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page rank

A ← 0.85A + 0.15

• What does this mean though?

• This defines a stochastic process: “PageRank can be thought of
as a model of user behavior. We assume there is a random
surfer who is given a web page at random and keeps clicking on
links, never hitting bakc, but eventually gets bored and starts on
another random page.”

• So a surfer clicks on a link on the current page with probability
0.85 and opens a random page with probability 0.15.

• PageRank is the probability that the random user will end up on
that page
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