eigenvalues, markov matrices, and the power method

Slides by Olson. Some taken loosely from Jeff Jauregui, Some from Semeraro
L. Olson

Department of Computer Science
University of Illinois at Urbana-Champaign

objectives

- Create a stochastic matrix (or Markov matrix) that represents the probability of moving from one state to the next
- Establish properties of the Markov Matrix
- Find the steady state of a stochastic matrix
- Relate the steady state to an eigenvecture
- Find important eigenvectors with the Power Method

random transitions

- Given a system of "states", we want to model the transition from state to state over time.
- Let n be the number of states
- So at time k the system is represented by $x_{k} \in \mathbb{R}^{n}$.
- $x_{k}^{(i)}$ is the probability of being in state i at time k

Definition

A probability vector is a vector of positive entries that sum to 1.0 .

markov chains

Definition

A Markov matrix is a square matrix M with columns that are probability vectors. So the entries of M are positive and the column sums are 1.0.

Definition
A Markov Chain is a sequence of probability vectors $x_{0}, x_{1}, \ldots, x_{k}, \ldots$ such that

$$
x_{k+1}=M x_{k}
$$

for some Markov Matrix M

markov chains

- Does a steady-state exist?
- Does a steady state depend on the initial state?
- Will x_{k+1} be a probability vector if x_{k} is a probability vector?
- Is the steady state unique?

markov theory

Theorem
Let M be a Markov Matrix. Then there is a vector $x \neq 0$ such that $M x=x$.

Proof?

- M^{T} is singular. Why?
- So there is an x such that $M^{\top} x=x$
- or so that $\left(M^{T}-I\right) x=0$
- Thus $M-I$ is singular. Why?

goal

- Find $x=A x$ and the elements of x are the probability vector (Basketball Ranking, Google Page Rank, etc).

power method

Suppose that A is $n \times n$ and that the eigenvalues are ordered:

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geqslant\left|\lambda_{3}\right| \geqslant \cdots \geqslant\left|\lambda_{n}\right|
$$

Assuming A is nonsingular, we have a linearly independent set of v_{i} such that $A v_{i}=\lambda_{i} v_{i}$.

Goal

Computing the value of the largest (in magnitude) eigenvalue, λ_{1}.

power method

Take a guess at the associated eigenvector, x_{0}. We know

$$
x^{(0)}=c_{1} v_{1}+\cdots+c_{n} v_{n}
$$

Since the guess was random, start with all $c_{j}=1$:

$$
x^{(0)}=v_{1}+\cdots+v_{n}
$$

Then compute

$$
\begin{aligned}
x^{(1)} & =A x^{(0)} \\
x^{(2)} & =A x^{(1)} \\
x^{(3)} & =A x^{(2)} \\
\vdots & \\
x^{(k+1)} & =A x^{(k)}
\end{aligned}
$$

power method

Or $x^{(k)}=A^{k} x^{(0)}$. Or

$$
\begin{aligned}
x^{(k)} & =A^{k} x^{(0)} \\
& =A^{k} v_{1}+\cdots+A^{k} v_{n} \\
& =\lambda_{1}^{k} v_{1}+\ldots \lambda_{n}^{k} v_{n}
\end{aligned}
$$

And this can be written as

$$
x^{(k)}=\lambda_{1}^{k}\left(v_{1}+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} v_{2}+\cdots+\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} v_{n}\right)
$$

So as $k \rightarrow \infty$, we are left with

$$
x^{(k)} \rightarrow \lambda^{k} v_{1}
$$

the power method (with normalization)

$$
\begin{array}{ll}
1 \text { for } & k=1 \text { to kmax } \\
2 & y=A x \\
3 & \\
4=\phi(y) / \phi(x) \\
4 & \\
x=y /\|y\|_{\infty}
\end{array}
$$

- often $\phi(x)=x_{1}$ is sufficient
- r is an estimate of the eigenvalue; x the eigenvector

inverse power method

- We now want to find the smallest eigenvalue
- $A v=\lambda v \quad \Rightarrow \quad A^{-1} v=\frac{1}{\lambda} v$
- So "apply" power method to A^{-1} (assuming a distinct smallest eigenvalue)
- $x^{(k+1)}=A^{-1} x^{(k)}$
- Easier with $A=L U$
- Update RHS and backsolve with U :

$$
U X^{(k+1)}=L^{-1} X^{(k)}
$$

theory

Theorem

Perron-Frobenius If M is a Markov matrix with positive entries, then M has a unique steady-state vector x.

Theorem
Perron-Frobenius Corollary Given an initial state x_{0}, then $x_{k}=M^{k} x_{0}$ converges to x.

pagerank

Example

Problem: Consider n linked webpages. Rank them.

- Let $x_{1}, \ldots, x_{n} \geqslant 0$ represent importance
- A link to a page increases the perceived importance of a webpage

Example

Try $n=4$.

- page 1: 2,3,4
- page 2: 3,4
- page 3: 1
- page 4: 1,3

page rank

First attempt

- Let x_{k} be the number of links to page k
- Problem: a link from an important page like The NY Times has no more weight than lukeo.cs.illinois.edu

page rank

Second attempt

- Let x_{k} be the sum of importance scores of all pages that link to page k
- Problem: a webpage has more influence simply by having more outgoing links
- Problem: the linear system is trivial (oops!)

page rank

Third attempt (Brin/Page '90s)

- Let n_{j} be the number of outgoing links on page j
- Let

$$
x_{k}=\sum_{j \text { linking to } k} \frac{x_{j}}{n_{j}}
$$

- The influence of a page is its importance. It is split evenly to the pages it links to.

Example

Let A be an $n \times n$ matrix as

$$
A_{i j}= \begin{cases}1 / n_{j} & \text { if page } j \text { links to page } i \\ 0 & \text { otherwise }\end{cases}
$$

page rank

- Sum of column j is $n_{j} / n_{j}=1$, so A is a Markov Matrix
- Problem: does not guarantee a unique x s.t. $A x=x$
- Brin-Page: Use instead

$$
A \leftarrow 0.85 A+0.15
$$

- Still a Markov Matrix
- Now has all positive entries
- Guarantees a unique solution

page rank

$$
A \leftarrow 0.85 A+0.15
$$

- What does this mean though?
- This defines a stochastic process: "PageRank can be thought of as a model of user behavior. We assume there is a random surfer who is given a web page at random and keeps clicking on links, never hitting bakc, but eventually gets bored and starts on another random page."
- So a surfer clicks on a link on the current page with probability 0.85 and opens a random page with probability 0.15 .
- PageRank is the probability that the random user will end up on that page

