
sparse matrices and graphs

L. Olson

Department of Computer Science
University of Illinois at Urbana-Champaign

1

objectives

• Convert a graph into a sparse matrix

• Go over a few sparse matrix storage formats

• Give an example of lower memory benefits

• Give an example of computational complexity benefits

2

sparse matrices

• Vague definition: matrix with few nonzero entries

• For all practical purposes: an m × n matrix is sparse if it has
O(min (m,n)) nonzero entries.

• This means roughly a constant number of nonzero entries per
row and column

3

sparse matrices

• Other definitions use a slow growth of nonzero entries with
respect to n or m.

• Wilkinson’s Definition: “..matrices that allow special techniques
to take advantage of the large number of zero elements.” (J.
Wilkinson)”

• A few applications which lead to sparse matrices: Structural
Engineering, Computational Fluid Dynamics, Reservoir
simulation, Electrical Networks, optimization, data analysis,
information retrieval (LSI), circuit simulation, device simulation,
. . .

4

sparse matrices: the goal

• To perform standard matrix computations economically i.e.,
without storing the zeros of the matrix.

• For typical Finite Element /Finite difference matrices, number of
nonzero elements is O(n).

Example

To add two square dense matrices of size n requires O(n2) operations.
To add two sparse matrices A and B requires O(nnz(A) + nnz(B))

where nnz(X) = number of nonzero elements of a matrix X .

remark

A−1 is usually dense, but L and U in the LU factorization may be
reasonably sparse (if a good technique is used).

5

goal

• Principle goal: solve
Ax = b

where A ∈ Rn×n, x,b ∈ Rn

• Assumption: A is very sparse

• General approach: iteratively improve the solution

• Given x0, ultimate “correction” is

x1 = x0 + e0

where e0 = x − x0, thus Ae0 = Ax − Ax0,

• or
x1 = x0 + A−1r0

where r0 = b − Ax0

6

goal

• Principle difficulty: how do we “approximate” A−1r or reformulate
the iteration?

• One simple idea:
x1 = x0 + αr0

• operation is inexpensive if r0 is inexpensive

• requires very fast sparse mat-vec (matrix-vector multiply) Ax0

7

sparse matrices

• So how do we store A?

• Fast mat-vec is certainly important; also ask
• what type of access (rows, cols, diag, etc)?
• dynamic allocation?
• transpose needed?
• inherent structure?

• Unlike dense methods, not a lot of standards for iterative
• dense BLAS have been long accepted
• sparse BLAS still iterating

• Even data structures for dense storage not as obvious

• Sparse operations have low operation/memory reference ratio

8

popular storage structures

DNS Dense ELL Ellpack-Itpack
BND Linpack Banded DIA Diagonal
COO Coordinate BSR Block Sparse Row
CSR Compressed Sparse Row SSK Symmetric Skyline
CSC Compressed Sparse Column BSR Nonsymmetric Skyline
MSR Modified CSR JAD Jagged Diagonal
LIL Linked List

note: CSR = CRS, CCS = CSC, SSK = SKS in some references

9

dns

A =

1.0 2.0 3.0
4.0 5.0 6.0
7.0 8.0 9.0


AA =

[
3 3 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

]

• simple

• row-wise

• easy blocked formats

10

coo

A =


1 0 0 2 0
3 4 0 5 0
6 0 7 8 9
0 0 10 11 0
0 0 0 0 12


AA = [12.0 9.0 7.0 5.0 1.0 2.0 11.0 3.0 6.0 4.0 8.0 10.0]

JR = [5 3 3 2 1 1 4 2 3 2 3 4]

JC = [5 5 3 4 1 4 4 1 1 2 4 3]

• simple, often used for entry

11

csr

A =


1 0 0 2 0
3 4 0 5 0
6 0 7 8 9
0 0 10 11 0
0 0 0 0 12


AA = [1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0]

JA = [1 4 1 2 4 1 3 4 5 3 4 5]

IA = [1 3 6 10 12 13]

• Length of AA and JA is nnz; length of IA is n + 1

• IA(j) gives the index (offset) to the beginning of row j in AA and
JA (one origin due to Fortran)

• no structure, fast row access, slow column access

• related: CSC, MSR

12

msr

A =


1 0 0 2 0
3 4 0 5 0
6 0 7 8 9
0 0 10 11 0
0 0 0 0 12


AA = [1.0 4.0 7.0 11.0 12.0 ∗ 2.0 3.0 5.0 6.0 8.0 9.0 10.0]
JA = [7 8 10 13 14 14 4 1 4 1 4 5 3]

• places importance on diagonal (often nonzero and accessed
frequently)

• first n entries are the diag
• n + 1 is empty
• rest of AA are the nondiagonal entries
• first n + 1 entries in JA give the index (offset) of the beginning of

the row (the IA of CSR is in this JA)
• rest of JA are the columns indices 13

dia

A =


1 0 2 0 0
3 4 0 5 0
0 6 7 0 8
0 0 9 10 0
0 0 0 11 12

 DIAG =


∗ 1.0 2.0

3.0 4.0 5.0
6.0 7.0 8.0
9.0 10.0 ∗
11.0 12.0 ∗

 IOFF =
[
−1 0 2

]

• need to know the offset structure

• some entries will always be empty

14

try it...

A =


7 0 0 0 0 0
0 1 2 0 0 0
0 2 0 2 0 0
0 0 0 0 5 0
0 0 0 0 6 4



• CSR

• COO

15

example

A =


7 0 0 0 0 0
0 1 2 0 0 0
0 2 0 2 0 0
0 0 0 0 5 0
0 0 0 0 6 4



i IA JA AA
1 2 2 1
2 3 4 2
3 4 5 5
4 2 3 2
5 5 6 4
6 1 1 7
7 5 5 6
8 3 2 2

COO

i IA JA AA
1 1 1 7
2 2 2 1
3 4 3 2
4 6 2 2
5 7 4 2
6 9 5 5
7 - 5 6
8 - 6 4

CSR

16

sparse matrix-vector multiply

z = Ax, Am×n, xn×1, zm×1

1 input A, x
2 z = 0
3 for i = 1 to m
4 for col = A(i, :)
5 z(i) = z(i) + A(i, col)x(col)
6 end

7 end

17

sparse matrix-vector multiply

z = Ax, Am×n, xn×1, zm×1

1 DO I=1, m

2 Z(I)=0

3 K1 = IA(I)

4 K2 = IA(I+1)-1

5 DO J=K1, K2

6 z(I) = z(I) + A(J)*x(JA(J))

7 ENDDO

8 ENDDO

• O(nnz)

• marches down the rows

• very cheap

18

sparse matrix-matrix multiply

• ways to optimize (“SMPP”, Douglas, Bank)

Z = AB, Am×n, Bn×p , zm×p

1 for i = 1 to m
2 for j = 1 to n
3 Z(i, j) = dot(A(i, :),B(:, j))
4 end

5 end

6 return Z

• obvious problem: column selection of B is expensive for CSR

• not-so-obvious problem: Z is sparse(!!), but the algorithm doesn’t
account for this.

19

sparse matrix-matrix multiply

Z = AB, Am×n, Bn×p , zm×p

1 Z=0

2 for i = 1 to m
3 for colA = A(i, :)
4 for colB = A(colA , :)

5 Z(i, colB)+ = A(i, colA) · B(colA , colB)

6 end

7 end

8 end

9 return Z

• only marches down rows
• only computes nonzero entries in Z (aside from fortuitous

subtractions)
• line 5 will do and insert into Z . Two options:

1. precompute sparsity of Z in CSR
2. use LIL for Z

20

21

some python

A =


7 0 0 0 0 0
0 1 2 0 0 0
0 2 0 2 0 0
0 0 0 0 5 0
0 0 0 0 6 4



i IA JA AA
1 2 2 1
2 3 4 2
3 4 5 5
4 2 3 2
5 5 6 4
6 1 1 7
7 5 5 6
8 3 2 2

COO

1 from scipy import sparse

2 from numpy import array

3 IA=array([1,2,3,1,4,0,4,2])

4 JA=array([1,3,4,2,5,0,4,1])

5 V=array([1,2,5,2,4,7,6,2])

6

7 A=sparse.coo_matrix((V,(IA,JA)),shape=(5,6))
22

some python

From COO to CSC:

1 from scipy import sparse

2 from numpy import array

3 import pprint

4 IA=array([1,2,3,1,4,0,4,2])

5 JA=array([1,3,4,2,5,0,4,1])

6 V=array([1,2,5,2,4,7,6,2])

7

8 A=sparse.coo_matrix((V,(IA,JA)),shape=(5,6)).tocsr()

Nonzeros:

1 print(A.nnz)

To full and view:

1 B=A.todense()

2 pprint.pprint(B) 23

simple matrix iterations

• Solve
Ax = b

• Assumption: A is very sparse
• Let A = N + M, then

Ax = b

(N + M)x = b

Nx = b − Mx

• Make this into an iteration:

Nxk = b − Mxk−1

xk = N−1(b − Mxk−1)

• Careful choice of N and M can give effective methods
• More powerful iterative methods exist

24

