sparse matrices and graphs

L. Olson

Department of Computer Science
University of Illinois at Urbana-Champaign

objectives

- Convert a graph into a sparse matrix
- Go over a few sparse matrix storage formats
- Give an example of lower memory benefits
- Give an example of computational complexity benefits

sparse matrices

- Vague definition: matrix with few nonzero entries
- For all practical purposes: an $m \times n$ matrix is sparse if it has $\mathcal{O}(\min (m, n))$ nonzero entries.
- This means roughly a constant number of nonzero entries per row and column

sparse matrices

- Other definitions use a slow growth of nonzero entries with respect to n or m.
- Wilkinson's Definition: "..matrices that allow special techniques to take advantage of the large number of zero elements." (J. Wilkinson)"
- A few applications which lead to sparse matrices: Structural Engineering, Computational Fluid Dynamics, Reservoir simulation, Electrical Networks, optimization, data analysis, information retrieval (LSI), circuit simulation, device simulation,

sparse matrices: the goal

- To perform standard matrix computations economically i.e., without storing the zeros of the matrix.
- For typical Finite Element /Finite difference matrices, number of nonzero elements is $\mathcal{O}(n)$.

Example

To add two square dense matrices of size n requires $\mathcal{O}\left(n^{2}\right)$ operations. To add two sparse matrices A and B requires $\mathcal{O}(n n z(A)+n n z(B))$ where $n n z(X)=$ number of nonzero elements of a matrix X.
remark
A^{-1} is usually dense, but L and U in the $L U$ factorization may be reasonably sparse (if a good technique is used).

goal

- Principle goal: solve

$$
A x=b
$$

where $A \in \mathbb{R}^{n \times n}, x, b \in \mathbb{R}^{n}$

- Assumption: A is very sparse
- General approach: iteratively improve the solution
- Given x_{0}, ultimate "correction" is

$$
x_{1}=x_{0}+e_{0}
$$

where $e_{0}=x-x_{0}$, thus $A e_{0}=A x-A x_{0}$,

- or

$$
x_{1}=x_{0}+A^{-1} r_{0}
$$

where $r_{0}=b-A x_{0}$

goal

- Principle difficulty: how do we "approximate" $A^{-1} r$ or reformulate the iteration?
- One simple idea:

$$
x_{1}=x_{0}+\alpha r_{0}
$$

- operation is inexpensive if r_{0} is inexpensive
- requires very fast sparse mat-vec (matrix-vector multiply) $A x_{0}$

sparse matrices

- So how do we store A?
- Fast mat-vec is certainly important; also ask
- what type of access (rows, cols, diag, etc)?
- dynamic allocation?
- transpose needed?
- inherent structure?
- Unlike dense methods, not a lot of standards for iterative
- dense BLAS have been long accepted
- sparse BLAS still iterating
- Even data structures for dense storage not as obvious
- Sparse operations have low operation/memory reference ratio

popular storage structures

DNS Dense
BND Linpack Banded
COO Coordinate
CSR Compressed Sparse Row
CSC Compressed Sparse Column
MSR Modified CSR
LIL Linked List

ELL Ellpack-ltpack
DIA Diagonal
BSR Block Sparse Row
SSK Symmetric Skyline
BSR Nonsymmetric Skyline
JAD Jagged Diagonal
note: $\mathrm{CSR}=\mathrm{CRS}, \mathrm{CCS}=\mathrm{CSC}, \mathrm{SSK}=\mathrm{SKS}$ in some references

$$
\begin{aligned}
A & =\left[\begin{array}{llll}
1.0 & 2.0 & 3.0 \\
4.0 & 5.0 & 6.0 \\
7.0 & 8.0 & 9.0
\end{array}\right] \\
A A & =\left[\begin{array}{llllllllll}
3 & 3 & 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 \\
9.0
\end{array}\right]
\end{aligned}
$$

- simple
- row-wise
- easy blocked formats

$$
\left.\begin{array}{c}
A=\left[\begin{array}{ccccc}
1 & 0 & 0 & 2 & 0 \\
3 & 4 & 0 & 5 & 0 \\
6 & 0 & 7 & 8 & 9 \\
0 & 0 & 10 & 11 & 0 \\
0 & 0 & 0 & 0 & 12
\end{array}\right] \\
A A=\left[\begin{array}{llllllllllll}
12.0 & 9.0 & 7.0 & 5.0 & 1.0 & 2.0 & 11.0 & 3.0 & 6.0 & 4.0 & 8.0 & 10.0
\end{array}\right] \\
J R
\end{array} \begin{array}{lllllllll}
& 3 & 3 & 3 & 2 & 1 & 1 & 4 & 2 \\
3 & 2 & 3 & 4 &
\end{array}\right]
$$

- simple, often used for entry

csr

$$
\begin{aligned}
& A=\left[\begin{array}{ccccc}
1 & 0 & 0 & 2 & 0 \\
3 & 4 & 0 & 5 & 0 \\
6 & 0 & 7 & 8 & 9 \\
0 & 0 & 10 & 11 & 0 \\
0 & 0 & 0 & 0 & 12
\end{array}\right] \\
& \left.\begin{array}{l}
A A=\left[\begin{array}{llllllllllllll}
{[1.0} & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 & 9.0 & 10.0 & 11.0 & 12.0 &] \\
J A & =[& 1 & 4 & 1 & 2 & 4 & 1 & 3 & 4 & 5 & 3 & 4 & 5
\end{array}\right. \\
I A
\end{array}\right]
\end{aligned}
$$

- Length of $A A$ and $J A$ is nnz; length of $I A$ is $n+1$
- $I A(j)$ gives the index (offset) to the beginning of row j in $A A$ and JA (one origin due to Fortran)
- no structure, fast row access, slow column access
- related: CSC, MSR

msr

$$
\begin{aligned}
& A=\left[\begin{array}{ccccc}
1 & 0 & 0 & 2 & 0 \\
3 & 4 & 0 & 5 & 0 \\
6 & 0 & 7 & 8 & 9 \\
0 & 0 & 10 & 11 & 0 \\
0 & 0 & 0 & 0 & 12
\end{array}\right] \\
& A A= {\left[\begin{array}{llllllllll}
1.0 & 4.0 & 7.0 & 11.0 & 12.0 & * & 2.0 & 3.0 & 5.0 & 6.0 \\
8 & 8.0 & 9.0 & 10.0
\end{array}\right] } \\
& J A=\left[\begin{array}{llllllll}
7 & 13 & 14 & 14 & 4 & 1 & 4 & 1
\end{array}\right. \\
& 4
\end{aligned}
$$

- places importance on diagonal (often nonzero and accessed frequently)
- first n entries are the diag
- $n+1$ is empty
- rest of $A A$ are the nondiagonal entries
- first $n+1$ entries in JA give the index (offset) of the beginning of the row (the IA of CSR is in this JA)
- rest of $J A$ are the columns indices

$$
A=\left[\begin{array}{lllcc}
1 & 0 & 2 & 0 & 0 \\
3 & 4 & 0 & 5 & 0 \\
0 & 6 & 7 & 0 & 8 \\
0 & 0 & 9 & 10 & 0 \\
0 & 0 & 0 & 11 & 12
\end{array}\right] \quad D I A G=\left[\begin{array}{ccc}
* & 1.0 & 2.0 \\
3.0 & 4.0 & 5.0 \\
6.0 & 7.0 & 8.0 \\
9.0 & 10.0 & * \\
11.0 & 12.0 & *
\end{array}\right] \quad I O F F=\left[\begin{array}{lll}
-1 & 0 & 2
\end{array}\right]
$$

- need to know the offset structure
- some entries will always be empty
try it...

$$
A=\left[\begin{array}{llllll}
7 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 & 0 \\
0 & 2 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 5 & 0 \\
0 & 0 & 0 & 0 & 6 & 4
\end{array}\right]
$$

- CSR
- COO

example

sparse matrix-vector multiply

$$
\begin{aligned}
& z=A x, A_{m \times n}, x_{n \times 1}, z_{m \times 1} \\
& 1 \text { input } A, x \\
& 2 z=0 \\
& 3 \text { for } i=1 \text { to } m \\
& 4 \text { for col }=A(i,:) \\
& 5 \quad z(i)=z(i)+A(i, c o l) x(c o l) \\
& 6 \text { end } \\
& 7 \text { end }
\end{aligned}
$$

sparse matrix-vector multiply

```
    \(z=A x, A_{m \times n}, x_{n \times 1}, z_{m \times 1}\)
1 DO I=1, m
    \(Z(I)=0\)
    K1 = IA(I)
    \(\mathrm{K} 2=\mathrm{IA}(\mathrm{I}+1)-1\)
    DO J=K1, K2
        \(z(I)=z(I)+A(J) * x(J A(J))\)
    ENDDO
8 ENDDO
```

- $\mathcal{O}(n n z)$
- marches down the rows
- very cheap

sparse matrix-matrix multiply

- ways to optimize ("SMPP", Douglas, Bank)
$Z=A B, A_{m \times n}, B_{n \times p}, Z_{m \times p}$
for $i=1$ to m
for $j=1$ to n $Z(i, j)=\operatorname{dot}(A(i,:), B(:, j))$
end
5 end
6 return Z
- obvious problem: column selection of B is expensive for CSR
- not-so-obvious problem: Z is sparse(!!), but the algorithm doesn't account for this.

sparse matrix-matrix multiply

$$
\left.\begin{array}{l}
Z=A B, A_{m \times n}, B_{n \times p}, Z_{m \times p} \\
1 Z=0 \\
2 \text { for } i=1 \text { to } m \\
3 \text { for } \operatorname{col} A=A(i,:) \\
4 \quad \text { for } \operatorname{col} B=A(\operatorname{col} A,:) \\
5 \\
6 \\
6 \\
7 \\
7 \\
8 \\
8 \\
\text { end } \\
9
\end{array}\right)
$$

- only marches down rows
- only computes nonzero entries in Z (aside from fortuitous subtractions)
- line 5 will do and insert into Z. Two options:

1. precompute sparsity of Z in CSR
2. use LIL for Z

some python

$$
A=\left[\begin{array}{cccccc}
7 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 & 0 \\
0 & 2 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 5 & 0 \\
0 & 0 & 0 & 0 & 6 & 4
\end{array}\right] \quad \begin{array}{c|ccc}
i & I A & J A & A A \\
\hline & 1 & 2 & 2 \\
1 \\
2 & 3 & 4 & 2 \\
3 & 4 & 5 & 5 \\
4 & 2 & 3 & 2 \\
\text { COO } \\
& & & \\
5 & 5 & 6 & 4 \\
6 & & 1 & 1 \\
7 & 5 & 5 & 6 \\
7 & 8 & 3 & 2
\end{array} 2
$$

1 from scipy import sparse
2 from numpy import array
3 $\operatorname{IA}=\operatorname{array}([1,2,3,1,4,0,4,2])$
$4 \mathrm{JA}=\operatorname{array}([1,3,4,2,5,0,4,1])$
$5 \mathrm{~V}=\operatorname{array}([1,2,5,2,4,7,6,2])$
6
7 A=sparse.coo_matrix $((V,(I A, J A))$, shape $=(5,6))$

some python

From COO to CSC:

```
1 from scipy import sparse
2 from numpy import array
з import pprint
4 IA=array([1,2,3,1,4,0,4,2])
5 JA=array ([1,3,4,2,5,0,4,1])
6 V=array([1,2,5,2,4,7,6,2])
7
8 A=sparse.coo_matrix((V,(IA,JA)),shape=(5,6)).tocsr()
```

Nonzeros:
1 print(A.nnz)

To full and view:
1 B=A.todense()
2 pprint.pprint(B)

simple matrix iterations

- Solve

$$
A x=b
$$

- Assumption: A is very sparse
- Let $A=N+M$, then

$$
\begin{aligned}
A x & =b \\
(N+M) x & =b \\
N x & =b-M x
\end{aligned}
$$

- Make this into an iteration:

$$
\begin{aligned}
N x_{k} & =b-M x_{k-1} \\
x_{k} & =N^{-1}\left(b-M x_{k-1}\right)
\end{aligned}
$$

- Careful choice of N and M can give effective methods
- More powerful iterative methods exist

