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objectives

• Construct a *singular value decomposition* or SVD

• Look at some problems the singular values are useful

• Highlight several properties of the SVD

• What do the singular values mean?

• How do then impact our numerics?

• What is the cost of computing them?
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svd: motivation

SVD uses in practice:

1. Search Technology: find closely related documents or images in
a database

2. Clustering: aggregate documents or images into similar groups

3. Compression: efficient image storage

4. Principal axis: find the main axis of a solid (engineering/graphics)

5. Summaries: Given a textual document, ascertain the most
representative tags

6. Graphs: partition graphs into subgraphs (graphics, analysis)
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svd: singular value decomposition

SVD takes an m × n matrix A and factors it:

A = USVT

where U (m ×m) and V (n × n) are orthogonal and S (m × n) is
diagonal.

Definition

A is orthogonal if AT A = AAT = I.

S is made up of “singular values”:

σ1 > σ2 > · · · > σr > σr+1 = · · · = σp = 0

Here, r = rank (A) and p = min(m,n).
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we want...
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diagonalizing a matrix

We want to factorize A into U, S, and VT . First step: find V . Consider

A = USVT

and multiply by AT

AT A = (USVT )T (USVT ) = VST UT USVT

Since U is orthogonal
AT A = VS2VT

This is called a similarity transformation.

Definition
Matrices A and B are similar if there is an invertible matrix Q such that

Q−1AQ = B

Theorem
Similar matrices have the same eigenvalues.
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proof

Bv = λv

Q−1AQv = λv

AQv = λQv

Aw = λw.

Further, if v is an eigenvector of B, Qv is an eigenvector of A .
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so far...

Need A = USVT

Look for V such that AT A = VS2VT . Here S2 is diagonal.

If AT A and S2 are similar, then they have the same eigenvalues. So
the diagonal matrix S2 is just the eigenvalues of AT A and V is the
matrix of eigenvectors. To see the latter, note that since S2 is

diagonal, the eigenvectors are ei , and VT ei is just the ith column of
VT .
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similarly...

Now consider
A = USVT

and multiply by AT from the right

AAT = (USVT )(USVT )T = USVT VST UT

Since V is orthogonal
AAT = US2UT

Now U is the matrix of eigenvectors of AAT .
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in the end...

We get

A =


...

...
...

u1 . . . um
...

...
...
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. . . vT
n . . .
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example

Decompose

A =

[
2 −2
1 1

]
First construct AT A :

AT A =

[
2 1
−2 1

][
2 −2
1 1

]
=

[
5 −3
−3 5

]

Eigenvalues: λ1 = 8 and λ2 = 2. So

S2 =

[
8 0
0 2

]
⇒ S =

[
2
√

2 0
0

√
2

]
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example

Now find VT and U. The columns of VT are the eigenvectors of AT A .

• λ1 = 8: (AT A − λ1I)v1 = 0

⇒

[
−3 −3
−3 −3

]
v1 = 0⇒

[
1 1
0 0

]
v1 = 0⇒ v1 =

[
−1
1

]
=

[
−
√

2/2√
2/2

]

• λ2 = 2: (AT A − λ2I)v2 = 0

⇒

[
3 −3
−3 3

]
v2 = 0⇒

[
1 −1
0 0

]
v2 = 0⇒ v2 =

[
1
1

]
=

[√
2/2√
2/2

]

• Finally:

V =

[
−
√

2/2
√

2/2√
2/2

√
2/2

]
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example

Now find U. The columns of U are the eigenvectors of AAT .

• λ1 = 8: (AAT − λ1I)u1 = 0

⇒

[
0 0
0 −6

]
u1 = 0⇒

[
0 1
0 0

]
u1 = 0⇒ u1 =

[
−1
0

]
• λ2 = 2: (AAT − λ2I)u2 = 0

⇒

[
6 0
0 0

]
u2 = 0⇒

[
1 0
0 0

]
u2 = 0⇒ u2 =

[
0
1

]
• Finally:

U =

[
−1 0
0 1

]
• Together:

A =

[
−1 0
0 1

][
2
√

2 0
0

√
2

][
−
√

2/2
√

2/2√
2/2

√
2/2

]
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svd: who cares?

How can we actually use A = USVT ? We can use this to represent A
with far fewer entries...

Notice what A = USVT looks like:

A = σ1u1vT
1 + σ2u2vT

2 + · · ·+ σrurvT
r + 0ur+1vT

r+1 + · · ·+ 0upvT
p

This is easily truncated to

A = σ1u1vT
1 + σ2u2vT

2 + · · ·+ σrurvT
r

What are the savings?

• A takes m × n storage
• using k terms of U and V takes k (1 + m + n) storage
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