solving systems

L. Olson

Department of Computer Science
University of Illinois at Urbana-Champaign

objectives

- Construct a linear system for a problem
- Solve a linear system
- Analyze the cost (and accuracy?) of a solve
- Develop an algorithm for solving systems

gaussian elimination

- Solving Triangular Systems
- Gaussian Elimination Without Pivoting
- Hand Calculations
- Cartoon Version
- Algorithm
- Elementary Elimination Matrices And LU Factorization

gaussian elimination

Gaussian elimination is a mostly general method for solving square systems.

We will work with systems in their matrix form, such as

$$
\begin{array}{r}
x_{1}+3 x_{2}+5 x_{3}=4 \\
9 x_{1}+7 x_{2}+8 x_{3}=6 \\
3 x_{1}+2 x_{2}+7 x_{3}=1,
\end{array}
$$

in its equivalent matrix form,

$$
\left[\begin{array}{lll}
1 & 3 & 5 \\
9 & 7 & 8 \\
3 & 2 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
6 \\
1
\end{array}\right] .
$$

triangular systems

The generic lower and upper triangular matrices are

$$
L=\left[\begin{array}{cccc}
I_{11} & 0 & \cdots & 0 \\
I_{21} & I_{22} & & 0 \\
\vdots & & \ddots & \vdots \\
I_{n 1} & & \cdots & I_{n n}
\end{array}\right]
$$

and

$$
U=\left[\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{1 n} \\
0 & u_{22} & & u_{2 n} \\
\vdots & & \ddots & \vdots \\
0 & & \cdots & u_{n n}
\end{array}\right]
$$

The triangular systems

$$
L y=b \quad U x=c
$$

are easily solved by forward substitution and backward substitution, respectively

solving triangular systems

Solving for $x_{1}, x_{2}, \ldots, x_{n}$ for an upper triangular system is called backward substitution.

Listing 1: backward substitution (page 270)

```
given A (upper }\triangle\mathrm{ ), b
x
for i=n-1...1
    s=b
    for j=i+1\ldotsn
        s=s-a i,j 和
        end
        xi=s/ai,i
end
```


solving triangular systems

Solving for $x_{1}, x_{2}, \ldots, x_{n}$ for an upper triangular system is called backward substitution.

Listing 2: backward substitution (page 270)

$$
\begin{aligned}
& \text { given } A \text { (upper } \triangle \text {), } b \\
& x_{n}=b_{n} / a_{n n} \\
& \text { for } i=n-1 \ldots 1 \\
& \quad s=b_{i} \\
& \quad \text { for } j=i+1 \ldots n \\
& \quad s=s-a_{i, j} x_{j} \\
& \text { end } \\
& \quad x_{i}=s / a_{i, i} \\
& \text { end }
\end{aligned}
$$

Using forward or backward substitution is sometimes referred to as performing a triangular solve.

operations?

cheap!

- begin in the bottom corner: 1 div
- row -2: 1 mult, 1 add, 1 div, or 3 FLOPS
- row -3: 2 mult, 2 add, 1 div, or 5 FLOPS
- row -4: 3 mult, 3 add, 1 div, or 7 FLOPS
-
- row $-j$: about $2 j-1$ FLOPS

Total FLOPS? $\sum_{j=1}^{n} 2 j-1=2 \frac{n(n+1)}{2}-n$ or $\mathcal{O}\left(n^{2}\right)$ FLOPS

gaussian elimination

- Triangular systems are easy to solve in $\mathcal{O}\left(n^{2}\right)$ FLOPS
- Goal is to transform an arbitrary, square system into an equivalent upper triangular system
- Then easily solve with backward substitution

This process is equivalent to the formal solution of $A x=b$, where A is an $n \times n$ matrix.

$$
x=A^{-1} b
$$

gaussian elimination - hand calculations

Solve

$$
\begin{array}{r}
x_{1}+3 x_{2}=5 \\
2 x_{1}+4 x_{2}=6
\end{array}
$$

Subtract 2 times the first equation from the second equation

$$
\begin{aligned}
x_{1}+3 x_{2} & =5 \\
-2 x_{2} & =-4
\end{aligned}
$$

This equation is now in triangular form, and can be solved by backward substitution.

gaussian elimination - hand calculations

The elimination phase transforms the matrix and right hand side to an equivalent system

$$
\begin{array}{rlrl}
x_{1}+3 x_{2} & =5 \\
2 x_{1}+4 x_{2} & =6 & \longrightarrow & x_{1}+3 x_{2}
\end{array}=5012 x_{2}=-4
$$

The two systems have the same solution. The right hand system is upper triangular.

Solve the second equation for x_{2}

$$
x_{2}=\frac{-4}{-2}=2
$$

Substitute the newly found value of x_{2} into the first equation and solve for x_{1}.

$$
x_{1}=5-(3)(2)=-1
$$

gaussian elimination - hand calculations

When performing Gaussian Elimination by hand, we can avoid copying the x_{i} by using a shorthand notation.

For example, to solve:

$$
A=\left[\begin{array}{rrr}
-3 & 2 & -1 \\
6 & -6 & 7 \\
3 & -4 & 4
\end{array}\right] \quad b=\left[\begin{array}{l}
-1 \\
-7 \\
-6
\end{array}\right]
$$

Form the augmented system

$$
\tilde{A}=\left[\begin{array}{ll}
A & b
\end{array}\right]=\left[\begin{array}{rrr|r}
-3 & 2 & -1 & -1 \\
6 & -6 & 7 & -7 \\
3 & -4 & 4 & -6
\end{array}\right]
$$

The vertical bar inside the augmented matrix is just a reminder that the last column is the b vector.

gaussian elimination - hand calculations

Add 2 times row 1 to row 2, and add (1 times) row 1 to row 3

$$
\tilde{A}_{(1)}=\left[\begin{array}{rrr|r}
-3 & 2 & -1 & -1 \\
0 & -2 & 5 & -9 \\
0 & -2 & 3 & -7
\end{array}\right]
$$

Subtract (1 times) row 2 from row 3

$$
\tilde{A}_{(2)}=\left[\begin{array}{rrr|r}
-3 & 2 & -1 & -1 \\
0 & -2 & 5 & -9 \\
0 & 0 & -2 & 2
\end{array}\right]
$$

gaussian elimination - hand calculations

The transformed system is now in upper triangular form

$$
\tilde{A}_{(2)}=\left[\begin{array}{rrr|r}
-3 & 2 & -1 & -1 \\
0 & -2 & 5 & -9 \\
0 & 0 & -2 & 2
\end{array}\right]
$$

Solve by back substitution to get

$$
\begin{aligned}
& x_{3}=\frac{2}{-2}=-1 \\
& x_{2}=\frac{1}{-2}\left(-9-5 x_{3}\right)=2 \\
& x_{1}=\frac{1}{-3}\left(-1-2 x_{2}+x_{3}\right)=2
\end{aligned}
$$

gaussian elimination - cartoon version

Start with the augmented system

$$
\left[\begin{array}{lllll}
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x
\end{array}\right]
$$

The x 's represent numbers, they are generally not the same values.

Begin elimination using the first row as the pivot row and the first element of the first row as the pivot element

$$
\left[\begin{array}{lllll}
\lfloor x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x
\end{array}\right]
$$

gaussian elimination - cartoon version

- Eliminate elements under the pivot element in the first column.
- x^{\prime} indicates a value that has been changed once.

$$
\left[\begin{array}{ccccc}
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
{[x} & x & x & x & x \\
0 & x^{\prime} & x^{\prime} & x^{\prime} & x^{\prime} \\
x & x & x & x & x \\
x & x & x & x & x
\end{array}\right]
$$

$$
\longrightarrow\left[\begin{array}{ccccc}
{[x} & x & x & x & x \\
0 & x^{\prime} & x^{\prime} & x^{\prime} & x^{\prime} \\
0 & x^{\prime} & x^{\prime} & x^{\prime} & x^{\prime} \\
x & x & x & x & x
\end{array}\right]
$$

$$
\longrightarrow\left[\begin{array}{ccccc}
\boxed{x} & x & x & x & x \\
0 & x^{\prime} & x^{\prime} & x^{\prime} & x^{\prime} \\
0 & x^{\prime} & x^{\prime} & x^{\prime} & x^{\prime} \\
0 & x^{\prime} & x^{\prime} & x^{\prime} & x^{\prime}
\end{array}\right]
$$

gaussian elimination - cartoon version

- The pivot element is now the diagonal element in the second row.
- Eliminate elements under the pivot element in the second column.
- $x^{\prime \prime}$ indicates a value that has been changed twice.

$$
\begin{aligned}
{\left[\begin{array}{ccccc}
x & x & x & x & x \\
0 & x^{\prime} & x^{\prime} & x^{\prime} & x^{\prime} \\
0 & x^{\prime} & x^{\prime} & x^{\prime} & x^{\prime} \\
0 & x^{\prime} & x^{\prime} & x^{\prime} & x^{\prime}
\end{array}\right] } & \rightarrow\left[\begin{array}{ccccc}
x & x & x & x & x \\
0 & \boxed{x^{\prime}} & x^{\prime} & x^{\prime} & x^{\prime} \\
0 & 0 & x^{\prime \prime} & x^{\prime \prime} & x^{\prime \prime} \\
0 & x^{\prime} & x^{\prime} & x^{\prime} & x^{\prime}
\end{array}\right] \\
& \longrightarrow\left[\begin{array}{ccccc}
x & x & x & x & x \\
0 & \boxed{x^{\prime}} & x^{\prime} & x^{\prime} & x^{\prime} \\
0 & 0 & x^{\prime \prime} & x^{\prime \prime} & x^{\prime \prime} \\
0 & 0 & x^{\prime \prime} & x^{\prime \prime} & x^{\prime \prime}
\end{array}\right]
\end{aligned}
$$

gaussian elimination - cartoon version

- The pivot element is now the diagonal element in the third row.
- Eliminate elements under the pivot element in the third column.
- $x^{\prime \prime \prime}$ indicates a value that has been changed three times.

$$
\left[\begin{array}{ccccc}
x & x & x & x & x \\
0 & x^{\prime} & x^{\prime} & x^{\prime} & x^{\prime} \\
0 & 0 & x^{\prime \prime} & x^{\prime \prime} & x^{\prime \prime} \\
0 & 0 & x^{\prime \prime} & x^{\prime \prime} & x^{\prime \prime}
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
x & x & x & x & x \\
0 & x^{\prime} & x^{\prime} & x^{\prime} & x^{\prime} \\
0 & 0 & x^{\prime \prime} & x^{\prime \prime} & x^{\prime \prime} \\
0 & 0 & 0 & x^{\prime \prime \prime} & x^{\prime \prime \prime}
\end{array}\right]
$$

gaussian elimination - cartoon version

Summary

- Gaussian Elimination is an orderly process for transforming an augmented matrix into an equivalent upper triangular form.
- The elimination operation at the $k^{\text {th }}$ step is

$$
\tilde{a}_{i j}=\tilde{a}_{i j}-\left(\tilde{a}_{i k} / \tilde{a}_{k k}\right) \tilde{a}_{k j}, \quad i>k, \quad j \geqslant k
$$

- Elimination requires three nested loops.
- The result of the elimination phase is represented by the image below.

$$
\left[\begin{array}{ccccc}
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x
\end{array}\right] \quad \longrightarrow\left[\begin{array}{ccccc}
x & x & x & x & x \\
0 & x^{\prime} & x^{\prime} & x^{\prime} & x^{\prime} \\
0 & 0 & x^{\prime \prime} & x^{\prime \prime} & x^{\prime \prime} \\
0 & 0 & 0 & x^{\prime \prime \prime} & x^{\prime \prime \prime}
\end{array}\right]
$$

gaussian elimination

Summary

- Transform a linear system into (upper) triangular form. i.e. transform lower triangular part to zero
- Transformation is done by taking linear combinations of rows
- Example: $a=\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$
- If $a_{1} \neq 0$, then

$$
\left[\begin{array}{cc}
1 & 0 \\
-a_{2} / a_{1} & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
a_{1} \\
0
\end{array}\right]
$$

gaussian elimination algorithm

Listing 3: Forward Elimination beta

```
given A, b
for k=1...n-1
        for i=k+1\ldotsn
            for j=k_..n
            aij}=\mp@subsup{a}{ij}{}-(\mp@subsup{a}{ik}{}/\mp@subsup{a}{kk}{})\mp@subsup{a}{kj}{
            end
            bi}=\mp@subsup{b}{i}{}-(\mp@subsup{a}{ik}{}/\mp@subsup{a}{kk}{})\mp@subsup{b}{k}{
        end
end
```

- the multiplier can be moved outside the j-loop
- no reason to actually compute 0

gaussian elimination algorithm

Listing 4: Forward Elimination

$$
\begin{aligned}
& \text { given } A, b \\
& \text { for } k=1 \ldots n-1 \\
& \text { for } i=k+1 \ldots n \\
& \quad \text { xmult }=a_{i k} / a_{k k} \\
& a_{i k}=0 \\
& \text { for } j=k+1 \ldots n \\
& \quad a_{i j}=a_{i j}-(x m u l t) a_{k j} \\
& \text { end } \\
& \quad b_{i}=b_{i}-(x m u l t) b_{k} \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

naive gaussian elimination algorithm

- Forward Elimination
- + Backward substitution
- = Naive Gaussian Elimination

forward elimination cost?

What is the cost in converting from A to U ?

Step	Add	Multiply	Divide
1	$(n-1)^{2}$	$(n-1)^{2}$	$n-1$
2	$(n-2)^{2}$	$(n-2)^{2}$	$n-2$
\vdots			
n-1	1	1	1

or

add	$\sum_{i=1}^{n-1} j^{2}$
multiply	$\sum_{j=1}^{n-1} j^{2}$
divide	$\sum_{j=1}^{n-1} j$

forward elimination cost?

add	$n-1$ $j=1$ $j=1$ j^{2} multiply $\sum_{j=1} j^{2}$ divide
$\sum_{j=1}^{n-1} j$	

We know $\sum_{j=1}^{p} j=\frac{p(p+1)}{2}$ and $\sum_{j=1}^{p} j^{2}=\frac{p(p+1)(2 p+1)}{6}$, so

add-subtracts	$\frac{n(n-1)(2 n-1)}{6}$
multiply-divides	$\frac{n(n-1)(2 n-1)}{6}+\frac{n(n-1)}{2}=\frac{n\left(n^{2}-1\right)}{3}$

forward elimination cost?

add-subtracts	$\frac{n(n-1)(2 n-1)}{6}$
multiply-divides	$\frac{n\left(n^{2}-1\right)}{3}$
add-subtract for b	$\frac{n(n-1)}{2}$
multipply-divides for b	$\frac{n(n-1)}{2}$

back substitution cost

As before

add-subtract	$\frac{n(n-1)}{2}$
multipply-divides	$\frac{n(n+1)}{2}$

naive gaussian elimination cost

Combining the cost of forward elimination and backward substitution gives

add-subtracts	$\frac{n(n-1)(2 n-1)}{6}+\frac{n(n-1)}{2}+\frac{n(n-1)}{2}$
multiply-divides	$=\frac{n(n-1)(2 n+5)}{3}$
	$\frac{n\left(n^{2}-1\right)}{3}$ $\quad=\frac{n(n-1)}{2}+\frac{n(n+1)}{3}$

So the total cost of add-subtract-multiply-divide is about

$$
\frac{2}{3} n^{3}
$$

\Rightarrow double n results in a cost increase of a factor of 8

elimination matrices

- Another way to zero out entries in a column of A
- Annihilate entries below $k^{\text {th }}$ element in a with matrix, M_{k} :

$$
M_{k} a=\left[\begin{array}{cccccc}
1 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 1 & 0 & \ldots & 0 \\
0 & \ldots & -m_{k+1} & 1 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & -m_{n} & 0 & \ldots & 1
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{k} \\
a_{k+1} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{k} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

where $m_{i}=a_{i} / a_{k}, i=k+1, \ldots, n$.

- The divisor a_{k} is the "pivot" (and needs to be nonzero)

elimination matrices

- Matrix M_{k} is an "elementary elimination matrix"
- Adds a multiple of row k to each subsequent row, with "multipliers" m_{i}
- Result is zeros in the $k^{\text {th }}$ column for rows $i>k$.
- M_{k} is unit lower triangular and nonsingular
- $M_{k}=I-m_{k} e_{k}^{T}$ where $m_{k}=\left[0, \ldots, 0, m_{k+1}, \ldots, m_{n}\right]^{T}$ and e_{k} is the $k^{\text {th }}$ column of the identity matrix I.
- $M_{k}^{-1}=I+m_{k} e_{k}^{T}$, which means M_{k}^{-1} is also lower triangular, and we will denote $M_{k}^{-1}=L_{k}$.

Can you prove $M_{k}^{-1}=I+m_{k} e_{k}^{T}$?

elimination matrices

- Suppose M_{j} and M_{k} are elementary elimination matrices with $j>k$, then

$$
\begin{aligned}
M_{k} M_{j} & =I-m_{k} e_{k}^{T}-m_{j} e_{j}^{T}+m_{k} e_{k}^{T} m_{j} e_{j}^{T} \\
& =I-m_{k} e_{k}^{T}-m_{j} e_{j}^{T}+m_{k}\left(e_{k}^{T} m_{j}\right) e_{j}^{T} \\
& =I-m_{k} e_{k}^{T}-m_{j} e_{j}^{T}
\end{aligned}
$$

because the $k^{\text {th }}$ entry of vector m_{j} is zero (since $j>k$)

- Thus $M_{k} M_{j}$ is essentially a union of their columns.
- Note this is also true for $M_{k}^{-1} M_{j}^{-1}$.

example

Let $a=\left[\begin{array}{c}2 \\ 4 \\ -2\end{array}\right]$.

$$
M_{1} a=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]
$$

and

$$
M_{2} a=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 / 2 & 1
\end{array}\right]\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
0
\end{array}\right]
$$

example

So

$$
L_{1}=M_{1}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right], L_{2}=M_{2}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 / 2 & 1
\end{array}\right]
$$

which means

$$
M_{1} M_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & 1 / 2 & 1
\end{array}\right], L_{1} L_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & -1 / 2 & 1
\end{array}\right]
$$

gaussian elimination

- To reduce $A x=b$ to upper triangular form, first construct M_{1} with a_{11} as the pivot (eliminating the first column of A below the diagonal.)
- Then $M_{1} A x=M_{1} b$ still has the same solution.
- Next construct M_{2} with pivot a_{22} to eliminate the second column below the diagonal.
- Then $M_{2} M_{1} A x=M_{2} M_{1} b$ still has the same solution
- $M_{n-1} \ldots M_{1} A x=M_{n-1} \ldots M_{1} b$
- Let $M=M_{n} M_{n-1} \ldots M_{1}$. Then $M A x=M b$, with MA upper triangular.
- Do back substitution on $M A x=M b$.

another way to look at a

We've mentioned L and U today. Why?
Consider this

$$
\begin{aligned}
& A=A \\
& A=\left(M^{-1} M\right) A \\
& A=\left(M_{1}^{-1} M_{2}^{-1} \ldots M_{n}^{-1}\right)\left(M_{n} M_{n-1} \ldots M_{1}\right) A \\
& A=\left(M_{1}^{-1} M_{2}^{-1} \ldots M_{n}^{-1}\right)\left(\left(M_{n} M_{n-1} \ldots M_{1}\right) A\right) \\
& A= \\
& L
\end{aligned}
$$

But MA is upper triangular, and we've seen that $M_{1}^{-1} \ldots M_{n}^{-1}$ is lower triangular. Thus, we have an algorithm that factors A into two matrices L and U.

why is this "naive"?

Example

$$
A=\left[\begin{array}{lll}
0 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

Example

$$
A=\left[\begin{array}{ccc}
1 e-10 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

