
solving systems

L. Olson

Department of Computer Science
University of Illinois at Urbana-Champaign

1



objectives

• Construct a linear system for a problem

• Solve a linear system

• Analyze the cost (and accuracy?) of a solve

• Develop an algorithm for solving systems

2



gaussian elimination

• Solving Triangular Systems

• Gaussian Elimination Without Pivoting
• Hand Calculations
• Cartoon Version
• Algorithm

• Elementary Elimination Matrices And LU Factorization

3



gaussian elimination

Gaussian elimination is a mostly general method for solving square
systems.

We will work with systems in their matrix form, such as

x1 + 3x2 + 5x3 = 4

9x1 + 7x2 + 8x3 = 6

3x1 + 2x2 + 7x3 = 1,

in its equivalent matrix form,1 3 5
9 7 8
3 2 7


x1

x2

x3

 =

4
6
1

 .

4



triangular systems

The generic lower and upper triangular matrices are

L =


l11 0 · · · 0
l21 l22 0
...

. . .
...

ln1 · · · lnn


and

U =


u11 u12 · · · u1n

0 u22 u2n
...

. . .
...

0 · · · unn


The triangular systems

Ly = b Ux = c

are easily solved by forward substitution and backward
substitution, respectively 5



solving triangular systems

Solving for x1, x2, . . . , xn for an upper triangular system is called
backward substitution.

Listing 1: backward substitution (page 270)

1 given A (upper 4), b
2 xn = bn/ann

3 for i = n − 1 . . . 1
4 s = bi

5 for j = i + 1 . . . n
6 s = s − ai,jxj

7 end

8 xi = s/ai,i

9 end

Using forward or backward substitution is sometimes referred to as
performing a triangular solve.

6



solving triangular systems

Solving for x1, x2, . . . , xn for an upper triangular system is called
backward substitution.

Listing 2: backward substitution (page 270)

1 given A (upper 4), b
2 xn = bn/ann

3 for i = n − 1 . . . 1
4 s = bi

5 for j = i + 1 . . . n
6 s = s − ai,jxj

7 end

8 xi = s/ai,i

9 end

Using forward or backward substitution is sometimes referred to as
performing a triangular solve.

6



operations?

cheap!

• begin in the bottom corner: 1 div

• row -2: 1 mult, 1 add, 1 div, or 3 FLOPS

• row -3: 2 mult, 2 add, 1 div, or 5 FLOPS

• row -4: 3 mult, 3 add, 1 div, or 7 FLOPS

•
...

• row -j: about 2j − 1 FLOPS

Total FLOPS?
∑n

j=1 2j − 1 = 2 n(n+1)
2 − n or O(n2) FLOPS

7



gaussian elimination

• Triangular systems are easy to solve in O(n2) FLOPS

• Goal is to transform an arbitrary, square system into an
equivalent upper triangular system

• Then easily solve with backward substitution

This process is equivalent to the formal solution of Ax = b, where A
is an n × n matrix.

x = A−1b

8



gaussian elimination — hand calculations

Solve

x1 + 3x2 = 5

2x1 + 4x2 = 6

Subtract 2 times the first equation from the second equation

x1 + 3x2 = 5

−2x2 = −4

This equation is now in triangular form, and can be solved by
backward substitution.

9



gaussian elimination — hand calculations

The elimination phase transforms the matrix and right hand side to an
equivalent system

x1 + 3x2 = 5

2x1 + 4x2 = 6
−→

x1 + 3x2 = 5

−2x2 = −4

The two systems have the same solution. The right hand system is
upper triangular.

Solve the second equation for x2

x2 =
−4
−2

= 2

Substitute the newly found value of x2 into the first equation and solve
for x1.

x1 = 5 − (3)(2) = −1
10



gaussian elimination — hand calculations

When performing Gaussian Elimination by hand, we can avoid
copying the xi by using a shorthand notation.

For example, to solve:

A =

−3 2 −1
6 −6 7
3 −4 4

 b =

−1
−7
−6


Form the augmented system

Ã = [A b] =

 −3 2 −1
6 −6 7
3 −4 4

∣∣∣∣∣∣∣
−1
−7
−6


The vertical bar inside the augmented matrix is just a reminder that
the last column is the b vector.

11



gaussian elimination — hand calculations

Add 2 times row 1 to row 2, and add (1 times) row 1 to row 3

Ã(1) =

 −3 2 −1
0 −2 5
0 −2 3

∣∣∣∣∣∣∣
−1
−9
−7


Subtract (1 times) row 2 from row 3

Ã(2) =

 −3 2 −1
0 −2 5
0 0 −2

∣∣∣∣∣∣∣
−1
−9

2



12



gaussian elimination — hand calculations

The transformed system is now in upper triangular form

Ã(2) =

 −3 2 −1
0 −2 5
0 0 −2

∣∣∣∣∣∣∣
−1
−9

2


Solve by back substitution to get

x3 =
2

−2
= −1

x2 =
1

−2
(−9 − 5x3) = 2

x1 =
1

−3
(−1 − 2x2 + x3) = 2

13



gaussian elimination — cartoon version

Start with the augmented system
x x x x x
x x x x x
x x x x x
x x x x x


The x ’s represent numbers, they are generally not the same values.

Begin elimination using the first row as the pivot row and the first
element of the first row as the pivot element

x x x x x
x x x x x
x x x x x
x x x x x


14



gaussian elimination — cartoon version

• Eliminate elements under the pivot element in the first column.
• x ′ indicates a value that has been changed once.


x x x x x

x x x x x

x x x x x

x x x x x

 −→


x x x x x

0 x ′ x ′ x ′ x ′

x x x x x

x x x x x



−→


x x x x x

0 x ′ x ′ x ′ x ′

0 x ′ x ′ x ′ x ′

x x x x x



−→


x x x x x

0 x ′ x ′ x ′ x ′

0 x ′ x ′ x ′ x ′

0 x ′ x ′ x ′ x ′



15



gaussian elimination — cartoon version

• The pivot element is now the diagonal element in the second row.
• Eliminate elements under the pivot element in the second

column.
• x ′′ indicates a value that has been changed twice.


x x x x x

0 x ′ x ′ x ′ x ′

0 x ′ x ′ x ′ x ′

0 x ′ x ′ x ′ x ′

 −→


x x x x x

0 x ′ x ′ x ′ x ′

0 0 x ′′ x ′′ x ′′

0 x ′ x ′ x ′ x ′



−→


x x x x x

0 x ′ x ′ x ′ x ′

0 0 x ′′ x ′′ x ′′

0 0 x ′′ x ′′ x ′′


16



gaussian elimination — cartoon version

• The pivot element is now the diagonal element in the third row.

• Eliminate elements under the pivot element in the third column.

• x ′′′ indicates a value that has been changed three times.


x x x x x

0 x ′ x ′ x ′ x ′

0 0 x ′′ x ′′ x ′′

0 0 x ′′ x ′′ x ′′

 −→


x x x x x

0 x ′ x ′ x ′ x ′

0 0 x ′′ x ′′ x ′′

0 0 0 x ′′′ x ′′′



17



gaussian elimination — cartoon version

Summary

• Gaussian Elimination is an orderly process for transforming an
augmented matrix into an equivalent upper triangular form.

• The elimination operation at the k th step is

ãij = ãij − (ãik/ãkk )ãkj , i > k , j > k

• Elimination requires three nested loops.
• The result of the elimination phase is represented by the image

below.
x x x x x

x x x x x

x x x x x

x x x x x

 −→


x x x x x

0 x ′ x ′ x ′ x ′

0 0 x ′′ x ′′ x ′′

0 0 0 x ′′′ x ′′′


18



gaussian elimination

Summary

• Transform a linear system into (upper) triangular form. i.e.
transform lower triangular part to zero

• Transformation is done by taking linear combinations of rows

• Example: a =

[
a1

a2

]
• If a1 , 0, then [

1 0
−a2/a1 1

][
a1

a2

]
=

[
a1

0

]

19



gaussian elimination algorithm

Listing 3: Forward Elimination beta
1 given A, b
2

3 for k = 1 . . . n − 1
4 for i = k + 1 . . . n
5 for j = k . . . n
6 aij = aij − (aik/akk )akj

7 end

8 bi = bi − (aik/akk )bk

9 end

10 end

• the multiplier can be moved outside the j-loop
• no reason to actually compute 0

Challenge: The loops over i and j may be exchanged—why would one
be preferable?

20



gaussian elimination algorithm

Listing 4: Forward Elimination

1 given A, b
2

3 for k = 1 . . . n − 1
4 for i = k + 1 . . . n
5 xmult = aik/akk

6 aik = 0
7 for j = k + 1 . . . n
8 aij = aij − (xmult)akj

9 end

10 bi = bi − (xmult)bk

11 end

12 end

21



naive gaussian elimination algorithm

• Forward Elimination

• + Backward substitution

• = Naive Gaussian Elimination

22



forward elimination cost?

What is the cost in converting from A to U?

Step Add Multiply Divide
1 (n − 1)2 (n − 1)2 n − 1
2 (n − 2)2 (n − 2)2 n − 2
...

n-1 1 1 1

or

add
∑n−1

j=1 j2

multiply
∑n−1

j=1 j2

divide
∑n−1

j=1 j

23



forward elimination cost?

add
∑n−1

j=1 j2

multiply
∑n−1

j=1 j2

divide
∑n−1

j=1 j

We know
∑p

j=1 j = p(p+1)
2 and

∑p
j=1 j2 = p(p+1)(2p+1)

6 , so

add-subtracts n(n−1)(2n−1)
6

multiply-divides n(n−1)(2n−1)
6 + n(n−1)

2 = n(n2−1)
3

24



forward elimination cost?

add-subtracts n(n−1)(2n−1)
6

multiply-divides n(n2−1)
3

add-subtract for b n(n−1)
2

multipply-divides for b n(n−1)
2

25



back substitution cost

As before

add-subtract n(n−1)
2

multipply-divides n(n+1)
2

26



naive gaussian elimination cost

Combining the cost of forward elimination and backward substitution
gives

add-subtracts n(n−1)(2n−1)
6 + n(n−1)

2 + n(n−1)
2

= n(n−1)(2n+5)
3

multiply-divides n(n2−1)
3 + n(n−1)

2 + n(n+1)
2

= n(n2+3n−1)
3

So the total cost of add-subtract-multiply-divide is about

2
3

n3

⇒ double n results in a cost increase of a factor of 8

27



elimination matrices

• Another way to zero out entries in a column of A

• Annihilate entries below k th element in a with matrix, Mk :

Mk a =



1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...

0 . . . 1 0 . . . 0
0 . . . −mk+1 1 . . . 0
...

. . .
...

...
. . .

...

0 . . . −mn 0 . . . 1





a1
...

ak

ak+1
...

an


=



a1
...

ak

0
...

0


where mi = ai/ak , i = k + 1, . . . ,n.

• The divisor ak is the “pivot” (and needs to be nonzero)

28



elimination matrices

• Matrix Mk is an “elementary elimination matrix”
• Adds a multiple of row k to each subsequent row, with “multipliers”

mi

• Result is zeros in the k th column for rows i > k .

• Mk is unit lower triangular and nonsingular

• Mk = I − mk eT
k where mk = [0, . . . ,0,mk+1, . . . ,mn]

T and ek is
the k th column of the identity matrix I.

• M−1
k = I + mk eT

k , which means M−1
k is also lower triangular, and

we will denote M−1
k = Lk .

Can you prove M−1
k = I + mk eT

k ?

29



elimination matrices

• Suppose Mj and Mk are elementary elimination matrices with
j > k , then

Mk Mj = I − mk eT
k − mjeT

j + mk eT
k mjeT

j

= I − mk eT
k − mjeT

j + mk (eT
k mj)eT

j

= I − mk eT
k − mjeT

j

because the k th entry of vector mj is zero (since j > k )

• Thus Mk Mj is essentially a union of their columns.

• Note this is also true for M−1
k M−1

j .

30



example

Let a =

 2
4
−2

.

M1a =

 1 0 0
−2 1 0
1 0 1


 2

4
−2

 =

2
0
0


and

M2a =

1 0 0
0 1 0
0 1/2 1


 2

4
−2

 =

2
4
0



31



example

So

L1 = M−1
1 =

 1 0 0
2 1 0
−1 0 1

 , L2 = M−1
2 =

1 0 0
0 1 0
0 −1/2 1


which means

M1M2 =

 1 0 0
−2 1 0
1 1/2 1

 , L1L2 =

 1 0 0
2 1 0
−1 −1/2 1



32



gaussian elimination

• To reduce Ax = b to upper triangular form, first construct M1 with
a11 as the pivot (eliminating the first column of A below the
diagonal.)

• Then M1Ax = M1b still has the same solution.

• Next construct M2 with pivot a22 to eliminate the second column
below the diagonal.

• Then M2M1Ax = M2M1b still has the same solution

• Mn−1 . . .M1Ax = Mn−1 . . .M1b

• Let M = MnMn−1 . . .M1. Then MAx = Mb, with MA upper
triangular.

• Do back substitution on MAx = Mb.

33



another way to look at a

We’ve mentioned L and U today. Why?

Consider this

A = A

A = (M−1M)A

A = (M−1
1 M−1

2 . . .M−1
n )(MnMn−1 . . .M1)A

A = (M−1
1 M−1

2 . . .M−1
n )((MnMn−1 . . .M1)A)

A = L U

But MA is upper triangular, and we’ve seen that M−1
1 . . .M−1

n is lower
triangular. Thus, we have an algorithm that factors A into two
matrices L and U.

34



why is this “naive”?

Example

A =

0 2 3
4 5 6
7 8 9



Example

A =

1e − 10 2 3
4 5 6
7 8 9



35


