\#5

Monte Carlo

L. Olson

September 10, 2015

Department of Computer Science
University of Illinois at Urbana-Champaign

why

- Central to the PageRank (and many many other applications in fincance, science, informatics, etc) is that we randomly process something
- what we want to know is "on average" what is likely to happen
- what would happen if we have an infinite number of samples?
- let's take a look at integral (a discrete limit in a sense)

integration

- integral of a function over a domain

$$
\int_{x \in D} f(x) d A_{x}
$$

- the size of a domain

$$
A_{D}=\int_{x \in D} d A_{x}
$$

- average of a function over some domain

$$
\frac{\int_{x \in D} f(x) d A_{x}}{A_{D}}
$$

integral example

The average "daily" snowfall in Champaign last year

- domain: year (1d time interval)
- integration variable: day
- function: snowfall depending on day

$$
\text { average }=\frac{\int_{\text {day } \in \text { year }} s(\text { day }) d_{\text {day }}}{\text { lengthofyear }}
$$

integral example

The average snowfall in Illinois

- domain: Illinois (2d surface)
- integration variable: (x, y) location
- function: snowfall depending on location

$$
\text { average }=\frac{\int_{\text {location } \in \text { Illinois }} s(\text { location }) d_{\text {Iocation }}}{\text { areaofillinois }}
$$

integral example

The average snowfall in Illinois today

- domain: Illinois \times year (3d space-time)
- integration variable: location and day
- function: snowfall depending on location and day

$$
\text { average }=\frac{\int_{\text {day } \in \text { year }} \int_{\text {location } \in \text { llinois }} s(\text { location, day }) d_{\text {location, day }}}{\text { areaofillinois } \cdot \text { lengthofyear }}
$$

discrete random variables

- random variable x
- values: $x_{0}, x_{1}, \ldots, x_{n}$
- probabilities $p_{0}, p_{1}, \ldots, p_{n}$ with $\sum_{i=0}^{n} p_{i}=1$
throwing a die (1-based index)
- values: $x_{1}=1, x_{2}=2, \ldots, x_{6}=6$
- probabilities $p_{i}=1 / 6$

expected value and variance

- expected value: average value of the variable

$$
E[x]=\sum_{j=1}^{n} x_{j} p_{j}
$$

- variance: variation from the average

$$
\sigma^{2}[x]=E\left[(x-E[x])^{2}\right]=E\left[x^{2}\right]-E[x]^{2}
$$

throwing a die

- expected value: $E[x]=(1+2+\cdots+6) / 6=3.5$
- variance: $\sigma^{2}[x]=2.916$

estimated e[x]

- to estimate the expected value, choose a set of random values based on the probability and average the results

$$
E[x]=\frac{1}{N} \sum_{j=1}^{N} x_{i}
$$

- bigger N gives better estimates
throwing a die
- 3 rolls: $3,1,6 \rightarrow E[x] \approx(3+1+6) / 3=3.33$
- 9 rolls: $3,1,6,2,5,3,4,6,2 \rightarrow E[x] \approx$ $(3+1+6+2+5+3+4+6+2) / 9=3.51$

law of large numbers

- by taking N to ∞, the error between the estimate an the expected value is statistically zero. That is, the estimate will converge to the correct value

$$
P\left(E[x]=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} x_{i}\right)=1
$$

continuous random variable

- random variable: x
- values: $x \in[a, b]$
- probability: density function $\rho(x)$ with $\int_{a}^{b} \rho(x) d x=1$
- probability that the variable is value $x: \rho(x)$

uniformly distributed random variable

- $\rho(x)$ is constant
- $\int_{a}^{b} \rho(x) d x=1$ means $\rho(x)=1 /(b-a)$

continuous extensions

- expected value

$$
\begin{aligned}
E[x] & =\int_{a}^{b} x \rho(x) d x \\
E[g(x)] & =\int_{a}^{b} g(x) \rho(x) d x
\end{aligned}
$$

- variance

$$
\begin{aligned}
\sigma^{2}[x] & =\int_{a}^{b}(x-E[x])^{2} \rho(x) d x \\
\sigma^{2}[g(x)] & =\int_{a}^{b}(g(x)-E[g(x)])^{2} p(x) d x
\end{aligned}
$$

- estimating the expected value

$$
E[g(x)] \approx \frac{1}{N} \sum_{i=1}^{N} g\left(x_{i}\right)
$$

multidementional extensions

- difficult domains (complex geometries)
- expected value

$$
E[g(x)]=\int_{x \in D} g(x) \rho(x) d A_{x}
$$

(deterministic) numerical integration

- split domain into set of fixed segments
- sum function values with size of segments (Riemann!)

algorithm

We have for a random sequence x_{1}, \ldots, x_{n}

$$
\int_{0}^{1} f(x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

$1 \mathrm{n}=100$
2 x=np.random.rand(n)
з $a=f(x)$
4 s=a.sum()/n

2d: example computing π

Use the unit square $[0,1]^{2}$ with a quarter-circle

$$
\begin{aligned}
f(x, y) & =\left\{\begin{array}{cc}
1 & (x, y) \in \text { circle } \\
0 & \text { else }
\end{array}\right. \\
A_{\text {quarter-circle }} & =\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y=\frac{p i}{4}
\end{aligned}
$$

2d: example computing π

Estimate the area of the circle by randomly evaluating $f(x, y)$

$$
A_{\text {quarter-circle }} \approx \frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}, y_{i}\right)
$$

2d: example computing π

By definition

$$
A_{\text {quarter-circle }}=\pi / 4
$$

SO

$$
\pi \approx \frac{4}{N} \sum_{i=1}^{N} f\left(x_{i}, y_{i}\right)
$$

2d: example computing π, algorithm

```
input N
call rand in 2d
for i=1:N
    sum =sum +f(x, (x, y )
end
sum = 4*sum/N
```


2d: example computing π, algorithm

The expected value of the error is $\mathcal{O}\left(\frac{1}{\sqrt{N}}\right)$

- convergence does not depend on dimension
- deterministic integration is very hard in higher dimensions
- deterministic integration is very hard for complicated domains

clt: central limit theorem

The distribution of an average is close to being normal, even when the distribution from which the average is computed is not normal.

What?

- Let x_{1}, \ldots, x_{n} be some independent random variables from any PDF
- Consider the sum $S_{n}=x_{1}+\cdots+x_{n}$
- The expected value is $n \mu$ and the standard deviation is $\sigma \sqrt{n}$
- That is, $\frac{S_{n}-n \mu}{\sigma \sqrt{n}}$ approaches the normal distribution
- What? The sample mean has an error of σ / \sqrt{n}

now what?

- How does one minimize the noise in this random process?
- pick better samples!
- Use more samples where the impact is high: where f is large

$$
I \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(x)}{p(x)}
$$

- So pick a distribution similar to f

$$
p_{\text {optimal }} \propto f(x)
$$

