why

- Central to the PageRank (and many many other applications in finance, science, informatics, etc) is that we randomly process something
- what we want to know is “on average” what is likely to happen
- what would happen if we have an infinite number of samples?
- let’s take a look at integral (a discrete limit in a sense)
• integral of a function over a domain

$$\int_{x \in D} f(x) \, dA_x$$

• the size of a domain

$$A_D = \int_{x \in D} dA_x$$

• average of a function over some domain

$$\frac{\int_{x \in D} f(x) \, dA_x}{A_D}$$
The average “daily” snowfall in Champaign last year

- domain: year (1d time interval)
- integration variable: day
- function: snowfall depending on day

\[
\text{average} = \frac{\int_{\text{day} \in \text{year}} s(\text{day}) d_{\text{day}}}{\text{lengthofyear}}
\]
The average snowfall in Illinois

- domain: Illinois (2d surface)
- integration variable: \((x, y)\) location
- function: snowfall depending on location

\[
\text{average} = \frac{\int_{\text{location} \in \text{Illinois}} s(\text{location}) \, d\text{location}}{\text{area of Illinois}}
\]
The average snowfall in Illinois today

- domain: Illinois × year (3d space-time)
- integration variable: location and day
- function: snowfall depending on location and day

\[
\text{average} = \frac{\int_{\text{day} \in \text{year}} \int_{\text{location} \in \text{Illinois}} s(\text{location}, \text{day}) \, d_{\text{location,day}}}{\text{area of Illinois} \cdot \text{length of year}}
\]
discrete random variables

- random variable x
- values: x_0, x_1, \ldots, x_n
- probabilities p_0, p_1, \ldots, p_n with $\sum_{i=0}^{n} p_i = 1$

throwing a die (1-based index)

- values: $x_1 = 1, x_2 = 2, \ldots, x_6 = 6$
- probabilities $p_i = 1/6$
expected value and variance

- expected value: average value of the variable

\[E[x] = \sum_{j=1}^{n} x_j p_j \]

- variance: variation from the average

\[\sigma^2[x] = E[(x - E[x])^2] = E[x^2] - E[x]^2 \]

throwing a die

- expected value: \(E[x] = (1 + 2 + \cdots + 6)/6 = 3.5 \)

- variance: \(\sigma^2[x] = 2.916 \)
estimated $e[x]$

- to estimate the expected value, choose a set of random values based on the probability and average the results

$$E[x] = \frac{1}{N} \sum_{j=1}^{N} x_i$$

- bigger N gives better estimates

throwing a die

- 3 rolls: 3, 1, 6 $\rightarrow E[x] \approx (3 + 1 + 6)/3 = 3.33$
- 9 rolls: 3, 1, 6, 2, 5, 3, 4, 6, 2 $\rightarrow E[x] \approx (3 + 1 + 6 + 2 + 5 + 3 + 4 + 6 + 2)/9 = 3.51$
by taking N to ∞, the error between the estimate and the expected value is statistically zero. That is, the estimate will converge to the correct value

$$P \left(E[x] = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} x_i \right) = 1$$
continuous random variable

- random variable: x
- values: $x \in [a, b]$
- probability: density function $\rho(x)$ with $\int_a^b \rho(x) \, dx = 1$
- probability that the variable is value x: $\rho(x)$
uniformly distributed random variable

- $\rho(x)$ is constant
- $\int_a^b \rho(x) \, dx = 1$ means $\rho(x) = 1/(b - a)$
continuous extensions

- expected value

\[E[x] = \int_a^b x \rho(x) \, dx \]
\[E[g(x)] = \int_a^b g(x) \rho(x) \, dx \]

- variance

\[\sigma^2[x] = \int_a^b (x - E[x])^2 \rho(x) \, dx \]
\[\sigma^2[g(x)] = \int_a^b (g(x) - E[g(x)])^2 \rho(x) \, dx \]

- estimating the expected value

\[E[g(x)] \approx \frac{1}{N} \sum_{i=1}^{N} g(x_i) \]
multidimensional extensions

- difficult domains (complex geometries)
- expected value

\[E[g(x)] = \int_{x \in D} g(x) \rho(x) \, dA_x \]
(deterministic) numerical integration

- split domain into set of fixed segments
- sum function values with size of segments (Riemann!)
We have for a random sequence x_1, \ldots, x_n

$$\int_0^1 f(x) \, dx \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i)$$

1. $n=100$
2. $x=np.random.rand(n)$
3. $a=f(x)$
4. $s=a.\text{sum}()$/n
2d: example computing π

Use the unit square $[0, 1]^2$ with a quarter-circle

$$f(x, y) = \begin{cases}
1 & (x, y) \in \text{circle} \\
0 & \text{else}
\end{cases}$$

$$A_{\text{quarter-circle}} = \int_0^1 \int_0^1 f(x, y) \, dx \, dy = \frac{\pi}{4}$$
Estimate the area of the circle by randomly evaluating $f(x, y)$

$$A_{\text{quarter-circle}} \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i, y_i)$$
By definition

\[A_{\text{quarter-circle}} = \frac{\pi}{4} \]

so

\[\pi \approx \frac{4}{N} \sum_{i=1}^{N} f(x_i, y_i) \]
2d: example computing \(\pi \), algorithm

```plaintext
input N
call rand in 2d
for i=1:N
    sum = sum + f(x_i, y_i)
end
sum = 4 * sum/N
```
The expected value of the error is $O \left(\frac{1}{\sqrt{N}} \right)$

- convergence does not depend on dimension
- deterministic integration is very hard in higher dimensions
- deterministic integration is very hard for complicated domains
The distribution of an average is close to being normal, even when the
distribution from which the average is computed is not normal.

What?

- Let x_1, \ldots, x_n be some independent random variables from any PDF
- Consider the sum $S_n = x_1 + \cdots + x_n$
- The expected value is $n\mu$ and the standard deviation is $\sigma \sqrt{n}$
- That is, $\frac{S_n - n\mu}{\sigma \sqrt{n}}$ approaches the normal distribution
- What? The sample mean has an error of σ/\sqrt{n}
now what?

• How does one minimize the noise in this random process?
• pick better samples!
• Use more samples where the impact is high: where f is large

$$I \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(x)}{p(x)}$$

• So pick a distribution similar to f

$$p_{\text{optimal}} \propto f(x)$$