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why

• Central to the PageRank (and many many other applications in
fincance, science, informatics, etc) is that we randomly process
something

• what we want to know is “on average” what is likely to happen

• what would happen if we have an infinite number of samples?

• let’s take a look at integral (a discrete limit in a sense)
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integration

• integral of a function over a domain∫
x∈D

f(x) dAx

• the size of a domain
AD =

∫
x∈D

dAx

• average of a function over some domain∫
x∈D f(x)dAx

AD
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integral example

The average “daily” snowfall in Champaign last year

• domain: year (1d time interval)

• integration variable: day

• function: snowfall depending on day

average =

∫
day∈year s(day)dday

lengthofyear
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integral example

The average snowfall in Illinois

• domain: Illinois (2d surface)

• integration variable: (x, y) location

• function: snowfall depending on location

average =

∫
location∈Illinois s(location)dlocation

areaofillinois

5



integral example

The average snowfall in Illinois today

• domain: Illinois × year (3d space-time)

• integration variable: location and day

• function: snowfall depending on location and day

average =

∫
day∈year

∫
location∈Illinois s(location,day)dlocation,day

areaofillinois · lengthofyear
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discrete random variables

• random variable x

• values: x0, x1, . . . , xn

• probabilities p0,p1, . . . ,pn with
∑n

i=0 pi = 1

throwing a die (1-based index)

• values: x1 = 1, x2 = 2, . . . , x6 = 6

• probabilities pi = 1/6
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expected value and variance

• expected value: average value of the variable

E[x] =
n∑

j=1

xjpj

• variance: variation from the average

σ2[x] = E[(x − E[x])2] = E[x2] − E[x]2

throwing a die

• expected value: E[x] = (1 + 2 + · · ·+ 6)/6 = 3.5

• variance: σ2[x] = 2.916
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estimated e[x]

• to estimate the expected value, choose a set of random values
based on the probability and average the results

E[x] =
1
N

N∑
j=1

xi

• bigger N gives better estimates

throwing a die

• 3 rolls: 3,1,6→ E[x] ≈ (3 + 1 + 6)/3 = 3.33

• 9 rolls: 3,1,6,2,5,3,4,6,2→ E[x] ≈
(3 + 1 + 6 + 2 + 5 + 3 + 4 + 6 + 2)/9 = 3.51

9



law of large numbers

• by taking N to∞, the error between the estimate an the
expected value is statistically zero. That is, the estimate will
converge to the correct value

P

(
E[x] = limN→∞ 1

N

N∑
i=1

xi

)
= 1
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continuous random variable

• random variable: x

• values: x ∈ [a,b]

• probability: density function ρ(x) with
∫b

a ρ(x) dx = 1

• probability that the variable is value x: ρ(x)
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uniformly distributed random variable

• ρ(x) is constant

•
∫b

a ρ(x) dx = 1 means ρ(x) = 1/(b − a)
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continuous extensions

• expected value

E[x] =
∫b

a
xρ(x) dx

E[g(x)] =
∫b

a
g(x)ρ(x) dx

• variance

σ2[x] =
∫b

a
(x − E[x])2ρ(x) dx

σ2[g(x)] =
∫b

a
(g(x) − E[g(x)])2p(x) dx

• estimating the expected value

E[g(x)] ≈ 1
N

N∑
i=1

g(xi)
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multidementional extensions

• difficult domains (complex geometries)

• expected value

E[g(x)] =
∫

x∈D
g(x)ρ(x) dAx
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(deterministic) numerical integration

• split domain into set of fixed segments

• sum function values with size of segments (Riemann!)
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algorithm

We have for a random sequence x1, . . . , xn∫1

0
f(x) dx ≈ 1

n

n∑
i=1

f(xi)

1 n=100

2 x=np.random.rand(n)

3 a=f(x)

4 s=a.sum()/n
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2d: example computing π

Use the unit square [0,1]2 with a quarter-circle

f(x, y) =

{
1 (x, y) ∈ circle

0 else

Aquarter−circle =

∫1

0

∫1

0
f(x, y) dxdy =

pi
4
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2d: example computing π

Estimate the area of the circle by randomly evaluating f(x, y)

Aquarter−circle ≈
1
N

N∑
i=1

f(xi , yi)
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2d: example computing π

By definition

Aquarter−circle = π/4

so

π ≈ 4
N

N∑
i=1

f(xi , yi)
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2d: example computing π, algorithm

1 input N
2 call rand in 2d
3 for i=1:N
4 sum = sum + f(xi , yi)

5 end

6 sum = 4 ∗ sum/N
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2d: example computing π, algorithm

The expected value of the error is O
(

1√
N

)
• convergence does not depend on dimension

• deterministic integration is very hard in higher dimensions

• deterministic integration is very hard for complicated domains
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clt: central limit theorem

The distribution of an average is close to being normal, even when the
distribution from which the average is computed is not normal.

What?

• Let x1, . . . , xn be some independent random variables from any
PDF

• Consider the sum Sn = x1 + · · ·+ xn

• The expected value is nµ and the standard deviation is σ
√

n

• That is, Sn−nµ
σ
√

n approaches the normal distribution

• What? The sample mean has an error of σ/
√

n
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now what?

• How does one minimize the noise in this random process?

• pick better samples!

• Use more samples where the impact is high: where f is large

I ≈ 1
N

N∑
i=1

f(x)
p(x)

• So pick a distribution similar to f

poptimal ∝ f(x)
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