\#5

Taylor Series: Expansions, Approximations and Error

L. Olson

September 15, 2015
Department of Computer Science
University of Illinois at Urbana-Champaign

motivation

- All we can ever do is add and multiply with our Floating Point Unit (FPU)
- We can't directly evaluate $e^{x}, \cos (x), \sqrt{x}$
- What can we do? Use Taylor Series approximation

taylor series definition

The Taylor series expansion of $f(x)$ at the point $x=c$ is given by

$$
\begin{aligned}
f(x) & =f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+\ldots \\
& =\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!}(x-c)^{k}
\end{aligned}
$$

an example

The Taylor series expansion of $f(x)$ about the point $x=c$ is given by

$$
\begin{aligned}
f(x) & =f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+\ldots \\
& =\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!}(x-c)^{k}
\end{aligned}
$$

Example (e^{x})

We know $e^{0}=1$, so expand about $c=0$ to get

$$
\begin{aligned}
f(x) & =e^{x}=1+1 \cdot(x-0)+\frac{1}{2} \cdot(x-0)^{2}+\ldots \\
& =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots
\end{aligned}
$$

taylor approximation

- So

$$
e^{2}=1+2+\frac{2^{2}}{2!}+\frac{2^{3}}{3!}+\ldots
$$

- But we can't evaluate an infinite series, so we truncate...

Taylor Series Polynomial Approximation

The Taylor Polynomial of degree n for the function $f(x)$ about the point c is

$$
p_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}
$$

Example (e^{x})
In the case of the exponential

$$
e^{x} \approx p_{n}(x)=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}
$$

taylor approximation

Evaluate e^{2} :

- Using $0^{\text {th }}$ order Taylor series: $e^{x} \approx 1$ does not give a good fit.
- Using $1^{\text {st }}$ order Taylor series: $e^{x} \approx 1+x$ gives a better fit.
- Using $2^{\text {nd }}$ order Taylor series: $e^{x} \approx 1+x+x^{2} / 2$ gives a a really good fit.

1 import numpy as np
$2 \mathrm{x}=2.0$
$3 \mathrm{pn}=0.0$
4 for k in range (15):
5 pn += (x**k) / math.factorial(k)
$6 \quad$ err $=n p \cdot \exp (2.0)-p n$

taylor approximation is local

Approximate e^{x} using $c=-1$:

taylor approximation is local

Approximate e^{x} using $c=0$:

taylor approximation is local

Approximate e^{x} using $c=1$:

taylor approximation recap

Infinite Taylor Series Expansion (exact)
$f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+\ldots$

Finite Taylor Series Expansion (exact)

$$
f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(\xi)}{n!}(x-c)^{n}
$$

but we don't know ξ.
Finite Taylor Series Approximation

$$
f(x) \approx f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(x)}{n!}(x-c)^{n}
$$

taylor approximation error

- How accurate is the Taylor series polynomial approximation?
- The n terms of the approximation are simply the first n terms of the exact expansion:

$$
\begin{equation*}
e^{x}=\underbrace{1+x+\frac{x^{2}}{2!}}_{p_{2} \text { approximation to } \mathrm{e}^{x}}+\underbrace{\frac{x^{3}}{3!}+\ldots}_{\text {truncation error }} \tag{1}
\end{equation*}
$$

- So the function $f(x)$ can be written as the Taylor Series approximation plus an error (truncation) term:

$$
f(x)=f_{n}(x)+E_{n}(x)
$$

where

$$
E_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-c)^{n+1}
$$

big-o (omicron)

Recall Big-O "0" notation
Let $g(n)$ be a function of n. Then define

$$
\mathcal{O}(g(n))=\left\{f(n) \mid \exists c, n_{0}>0: 0 \leqslant f(n) \leqslant c g(n), \forall n \geqslant n_{0}\right\}
$$

That is, $f(n) \in \mathcal{O}(g(n))$ if there is a constant c such that $0 \leqslant f(n) \leqslant c g(n)$ is satisfied.

truncation error

Using the Big "(O" notation,

$$
\begin{aligned}
E_{n}(x) & =\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-c)^{n+1} \\
& =\mathcal{O}\left(\frac{(x-c)^{n+1}}{(n+1)!}\right)
\end{aligned}
$$

since we assume the $(n+1)^{\text {th }}$ derivative is bounded on the interval [a,b].

Often, we let $h=x-c$ and we have

$$
f(x)=p_{n}(x)+\mathcal{O}\left(h^{n+1}\right)
$$

truncation error

The Taylor series expansion of $\sin (x)$ is

$$
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\ldots
$$

If $x \ll 1$, then the remaining terms are small.
If we neglect these terms

$$
\sin (x)=\underbrace{x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}}_{\text {approximation to } \sin } \underbrace{-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\ldots}_{\text {truncation error }}
$$

another example: $f(x)=\frac{1}{1-x}$

- Evaluation of $f(x)=\frac{1}{1-x}$ using Taylor Series Expansion:

$$
f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(\xi)}{n!}(x-c)^{n}
$$

- Thus with $\mathrm{c}=0$

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots
$$

- Second order approximation:

$$
\frac{1}{1-x} \approx 1+x+x^{2}
$$

taylor errors

- How many terms do I need to make sure my error is less than 2×10^{-8} for $x=1 / 2$?

$$
\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\sum_{k=n+1}^{\infty} x^{k}
$$

- so the error at $x=1 / 2$ is

$$
\begin{aligned}
e_{x=1 / 2} & =\sum_{k=n+1}^{\infty}\left(\frac{1}{2}\right)^{k}=\frac{(1 / 2)^{n+1}}{1-1 / 2} \\
& =2 \cdot(1 / 2)^{n+1}<2 \times 10^{-8}
\end{aligned}
$$

- then we need

$$
\begin{aligned}
n+1 & >\frac{-8}{\log _{10}(1 / 2)} \approx 26.6 \text { or } \\
n & >26
\end{aligned}
$$

some remarks

- can approximate infinite series; in particular analytic functions (those that have a power series representation).
- a local approximation (i.e. convergence can be slow far away from evaluation point c).
- Maclaurin is the special case when $c=0$.
- useful for numerical approximation, differentiation, and integration

