\#7

Linear Algebra Meets Computation

R. Beeson

September 22, 2015

Department of Aerospace Engineering
University of Illinois at Urbana-Champaign

focus of the day

- why linear algebra and computation?
- how do we represent data in a linear algebra form?
- build a connection between data and vectors
- investigate operations on vectors (i.e. data)
- look ahead toward more sophisticated operators on data

why linear algebra?

- what connection does linear algebra have with numerics?
- what math operations can we perform on a computer? (think FPU).
- linear algebra. specifically:
- vectors \rightarrow data
- matrices \rightarrow operators on data

vector addition and subtraction

Addition and subtraction are element-by-element operations

$$
\begin{aligned}
& c=a+b \Longleftrightarrow \\
& d=a-b \Longleftrightarrow c_{i}=a_{i}+b_{i} \quad i=1, \ldots, n \\
& d_{i}=a_{i}-b_{i} \quad i=1, \ldots, n
\end{aligned}
$$

$$
a=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad b=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

$$
a+b=\left[\begin{array}{l}
4 \\
4 \\
4
\end{array}\right] \quad a-b=\left[\begin{array}{r}
-2 \\
0 \\
2
\end{array}\right]
$$

multiplication by a scalar

Multiplication by a scalar involves multiplying each element in the vector by the scalar:

$$
b=\sigma a \quad \Longleftrightarrow \quad b_{i}=\sigma a_{i} \quad i=1, \ldots, n
$$

$$
a=\left[\begin{array}{l}
4 \\
6 \\
8
\end{array}\right] \quad b=\frac{a}{2}=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]
$$

linear combinations

Combine scalar multiplication with addition

$$
\begin{gathered}
\alpha\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{m}
\end{array}\right]+\beta\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{m}
\end{array}\right]=\left[\begin{array}{c}
\alpha u_{1}+\beta v_{1} \\
\alpha u_{2}+\beta v_{2} \\
\vdots \\
\alpha u_{m}+\beta v_{m}
\end{array}\right]=\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{m}
\end{array}\right] \\
r=\left[\begin{array}{r}
-2 \\
1 \\
3
\end{array}\right] \quad s=\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right] \\
t=2 r+3 s=\left[\begin{array}{r}
-4 \\
2 \\
6
\end{array}\right]+\left[\begin{array}{l}
3 \\
0 \\
9
\end{array}\right]=\left[\begin{array}{r}
-1 \\
2 \\
15
\end{array}\right]
\end{gathered}
$$

linear combinations

Any one vector can be created from an infinite combination of other "suitable" vectors.

$$
\begin{aligned}
& w=\left[\begin{array}{l}
4 \\
2
\end{array}\right]=4\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& w=6\left[\begin{array}{l}
1 \\
0
\end{array}\right]-2\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \\
& w=\left[\begin{array}{l}
2 \\
4
\end{array}\right]-2\left[\begin{array}{r}
-1 \\
1
\end{array}\right] \\
& w=2\left[\begin{array}{l}
4 \\
2
\end{array}\right]-4\left[\begin{array}{l}
1 \\
0
\end{array}\right]-2\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

vector operations

why do these operations make sense?

linear independence and a basis

- A set of vectors $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ are said to be linearly independent if

$$
\sum_{i=1}^{m} \alpha_{i} u_{i}=0 \text { only when } \alpha_{i}=0 \quad \forall i
$$

Otherwise the set is linearly dependent.

- A basis is a set of linearly independent vectors, such that any other vector is a linear combination of the basis vectors.

linear combinations

Graphical

 interpretation:- Vector tails can be moved to convenient locations
- Magnitude and direction of vectors is preserved

linear, affine, and convex combinations

linear:

$$
\sum_{i=1}^{n} \alpha_{i} u_{i} \quad \alpha_{i} \in \mathbb{R} \quad u_{i} \in \mathbb{R}^{m}
$$

affine:
same as linear with the added constraint: $\sum_{i=1}^{n} \alpha_{i}=1$
convex:
same as affine with the added constraint: $\alpha_{i}>0 \quad \forall i$

vector transpose

The transpose of a row vector is a column vector:

$$
u=[1,2,3] \quad \text { then } \quad u^{T}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

Likewise if v is the column vector

$$
v=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right] \quad \text { then } \quad v^{T}=[4,5,6]
$$

vector inner product

In physics, analytical geometry, and engineering, the dot product has a geometric interpretation

$$
\begin{gathered}
\sigma=x \cdot y \Longleftrightarrow \sigma=\sum_{i=1}^{n} x_{i} y_{i} \\
x \cdot y=\|x\|_{2}\|y\|_{2} \cos \theta
\end{gathered}
$$

vector inner product

The inner product of x and y requires that x be a row vector y be a column vector

$$
\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4}
$$

vector inner product

For two n-element column vectors, u and v, the inner product is

$$
\sigma=u^{T} v \quad \Longleftrightarrow \quad \sigma=\sum_{i=1}^{n} u_{i} v_{i}
$$

The inner product is commutative so that (for two column vectors)

$$
u^{T} v=v^{T} u
$$

vector outer product

The inner product results in a scalar.
The outer product creates a rank-one matrix:

$$
A=u v^{\top} \quad \Longleftrightarrow \quad a_{i, j}=u_{i} v_{j}
$$

operators on vectors (i.e. data)

Vectors (i.e. data) is one-half of our Linear Algebra. The other focuses on Operators acting on the vectors.
What can these operators do?

- Scaling
- Permutations
- Rotation
- Used in Linear System Solves

Do they (Operators) have another name?

- Matrices

notation

The operator A with m rows and n columns looks like:

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & & a_{2 n} \\
\vdots & & & \vdots \\
a_{m 1} & & \cdots & a_{m n}
\end{array}\right]
$$

$a_{i j}=$ element in row i, and column j

Recall the significance of the entry position for a vector (e.g. if $a=[1,2,4,9, \ldots]$, what is the meaning of 1 in the first entry). What is the significance of the entry positions in A then?

matrices consist of row and column vectors

As a collection of column vectors

$$
A=\left[\begin{array}{l|l|l|l}
& & & \\
& & \\
& & & \\
& & & \\
& & & \\
& & & \\
(2)
\end{array}\right]
$$

As a collection of row vectors

some remarks

- data can be represented by vectors in the linear algebra sense
- we have seen how to perform vector operations
- we will see operators can be applied to the data to yield more interesting and useful results
- linear algebra forms the base of our numerical methods

