#5

Linear Algebra Meets Computation (cont.)

Erin Carrier September 24, 2015

Department of Computer Science University of Illinois at Urbana-Champaign

goals for today

- Last time we learned about representing data; now how can we manipulate it?
- Thinking about a matrix as an operator on data
- Using an operator to rotate, scale, etc. geometric data
- Applying these operators to actual problems

recall matrix-vector multiplication

Consider computing Ax = y.

Recall summation notation

$$y_i = \sum_j A_{ij} x_j$$

- Not very intuitive
- Two ways to think about mat-vecs:
 - · Linear combination of column vectors
 - Dot product of x with rows of A

recall matrix-matrix multiplication

Consider computing AB = C.

Recall summation notation

$$C_{ij} = \sum_{k} A_{ik} B_{kj}$$

· Actually just applying mat-vec to lots of column vectors

matrices as operators

- Matrices operate on data
- For y = Ax, x is transformed into y
- Data can be list of values (stored in a vector) or geometric vectors

matrices operating on data

- Recall representing data as vectors, e.g. sound
- How could we represent an averaging operation?
- Recall representing data as matrices (2d vectors), e.g. image
- Image blurring demo

matrices operating on vectors

What can matrices do?

- Scale
- Rotate
- Can they translate? Think on this

scaling operator

- Stretching an image or a vector
- Can stretch by different amounts in different dimensions
- Example:

$$\begin{bmatrix} c_1 & 0 & \cdots & 0 \\ 0 & c_2 & \cdots & 0 \\ \vdots & & & \\ 0 & \cdots & 0 & c_m \end{bmatrix}$$

Scaling by negative number reflects over axis

B

rotating operator

- Think about rotating $[1, 0]^T$ and $[0, 1]^T$ clockwise by θ
- What do these vectors turn into?
- Example:

$$\begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

- What changes to rotate counter-clockwise?
- Matrices for geometry transformation demo

can matrices translate?

- Consider a 2 × 2 matrix A
- Suppose we have 4 points representing the corners of the unit square:

• Is it possible to mulitply each point by A (i.e. Ax for each point x) to move (translate) this square?

special matrices

Identity matrix: operator that does nothing

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & & & \\ 0 & \cdots & 0 & 1 \end{bmatrix}$$

- Permutation matrix
 - · Permutation of the identity matrix
 - Permutes (swaps) rows
 - Example:

$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} c \\ a \\ b \end{bmatrix}$$

matrices are linear operators

What do we mean by linear?

$$A(x + y) = Ax + Ay$$
$$A(\alpha x) = \alpha Ax$$

matrices as sets of vectors

We have been thinking about matrices as operating on vectors. It can also be useful to think of matrix as a set of column vectors.

But first, let's revisit some topics from last time:

Recall linear independence/dependence: A set of vectors
v₁, v₂,..., v_m are linearly independent if

$$\sum_{i=1}^{m} \alpha_i v_i = 0 \iff \alpha_i = 0 \forall i$$

Otherwise set is linearly dependent.

- Recall basis: A set of linearly independent vectors such that any other vectors in the same space can be represented as a linear combination of the basis vectors.
- Span: Set of vectors that can be written as a linear combination of basis vectors

matrices as sets of vectors (cont).

So, what does this have to do with matrices?

Consider a matrix A, composed of column vectors, a_1, a_2, \ldots, a_m

- Rank(A): the number of linearly independent columns
 - Column rank = row rank
- Nullspace(A): the set of all vectors that A annihilates any x such that Ax = 0
 - Zero vector always in the nullspace of a matrix
 - · What does it mean for nullspace to be nontrivial?
 - Connection to rank?
- Range(A): the span of the columns of A all vectors y such that
 Ax = y for some x (think about mat-vec as linear combination of
 columns)

linear systems

- Matvec is computing y = Ax.
- What if we know y, but not x?
- In terms of matrices as sets of vectors, think of this as finding the coefficients to the vectors so linear combination produces right hand side.
- In terms of matrices as linear operators, think of this as finding data that when operated on by equations gives right hand side.

linear systems (cont)

Example: Consider linear system:

$$2x_1 + 3x_2 - x_3 = 5$$
$$4x_1 + x_2 + x_3 = 9$$
$$x_1 - x_2 + 3x_3 = 8$$

This can be represented as

$$\begin{bmatrix} 2 & 3 & -1 \\ 4 & 1 & 1 \\ 1 & -1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 9 \\ 8 \end{bmatrix}$$

The solution, x to Ax = y is

$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

What does this represent in both views from last slide?