#3

Errors in computation; where do they come from?

L. Olson
September 1, 2015

Department of Computer Science
University of lllinois at Urbana-Champaign

e look at floating point representation in its basic form
e expose errors of a different form: rounding error

e highlight IEEE-754 standard

why this is important:

e Errors come in two forms: truncation error and rounding error
e we always have them ...
e case study: Intel
e our jobs as developers: reduce impact

example: calculating x = x + 0.1

next: floating point numbers

e We're familiar with base 10 representation of numbers:
1234 = 4 x 10° + 3 x 10" + 2 x 10> + 1 x 10°
and
1234=1x10""+2x1072+3x107°+4 x 10~*
e we write 1234.1234 as an integer part and a fractional part:
azasaiag.bibobsby
e For some (even simple) numbers, there may be an infinite number of
digits to the right:
m = 3.14159. ..
1/9 =0.11111...
V2 =141421. ..

e So far, we have just base 10. What about base 87
e binary (8 = 2), octal (8 = 8), hexadecimal (3 = 16), etc

e In the B-system we have

(3,, coo 828180.b1b2b3b4 coo)5 = Z akb’k + Z bkﬂ_k
k=0 k=0

Integer conversion

An algorithm to compute the base 2 representation of a base 10 integer
(N)IO = (ajaj_l 000 3230)2
=aj'2j+~-'+81-21+80'20
Compute (N)10/2 = Q + R/2:

N o

:aj'2j71+"'+31'20 4

2L T2
=Q =R/2
Example
Example: compute (11)1 base 2
11/2=5R1 = 2=
5/2=2R1 = a =1
2/2=1R0 = a =0
1/2=0Rl = a3=1

So (11)10 = (1011)2

Convert a base-2 number to base-10:

(11000101),
=1x2T4+1x2240x2240x2%+0x224+1x2240x2+1x2°
=1+2(0+2(1+2(0+2(0+2(0+2(1 +2(1)))))))

=197

converting fractions

straight forward way is not easy

goal: for x € [0, 1] write

X = O.b1b2b3b4' Z Ckﬁ k= 0 C1CC3 .),3

ﬂ(X) = (Cl.C2C3C4 000)[3
multiplication by S in base-$3 only shifts the radix

fraction algorithm

An algorithm to compute the binary representation of a fraction x:

X = 0.bybsbabs - .
:b1'271+...

Multiply x by 2. The integer part of 2x is by

2x=by -4 by 27 4 by 2724 .
Example
Example:Compute the binary representation of 0.625

2.0625=125 = b_;=1
2.025=05 = b ,=0
2.05=10 = bsy=1

So (0.625);0 = (0.101),

a problem with precision

1 =X
> for k=1,2,....m
3 if I’k_1227k

4 by=1

5 re = re—1 — 2~k

6 else

7 bk =0

8 end

9 end
k| 27K b | rk = re—1— bk27k
0 0.8125
1105 1 0.3125
21025 1 0.0625
3] 0.125 0 | 0.0625
4 1 0.0625 | 1 0.0000

binary fraction example

a problem with precision

For other numbers, such as % = 0.2, an infinite length is needed.

0.2 — .001100110011 ...

So 0.2 is stored just fine in base-10, but needs infinite number of digits in
base-2

This is roundoff error in its basic form...

numerical errors

Roundoff

Roundoff occurs when digits in a decimal point (0.3333...) are lost (0.3333)
due to a limit on the memory available for storing one numerical value.

Truncation

Truncation error occurs when discrete values are used to approximate a
mathematical expression.

21

uncertainty: well- or ill-conditioned?

Errors in input data can cause uncertain results
e input data can be experimental or rounded. leads to a certain
variation in the results

e well-conditioned: numerical results are insensitive to small variations
in the input

e ill-conditioned: small variations lead to drastically different
numerical calculations (a.k.a. poorly conditioned)

22

As numerical analysts, we need to

1. solve a problem so that the calculation is not susceptible to large
roundoff error

2. solve a problem so that the approximation has a tolerable truncation
error

How?

e incorporate roundoff-truncation knowledge into
e the mathematical model
e the method
e the algorithm
e the software design

e awareness — correct interpretation of results

23

floating points

Normalized Floating-Point Representation

Real numbers are stored as

X = i(O.d1d2d3 000 dm)5 X Be

e did>ds...d,, is the mantissa, e is the exponent
e ¢ is negative, positive or zero

e the general normalized form requires d; # 0

24

floating point

Example
In base 10

e 1000.12345 can be written as
(0.100012345)4 x 10*
e 0.000812345 can be written as

(0.812345)15 x 1073

25

floating point

Suppose we have only 3 bits for a mantissa and a 1 bit exponent stored
like

L[|]

All possible combinations give:

000, =0
X 2—1,0,1
111, =7
So we get 0, 1 16,16,... 76 0, % %,. ,%,and O,%,%,...,%. On the real
line:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 26
0 1416 148 3/16 1/4 516 3/8 7416 1/2 5/8 374 Fia 1 5/4 sz 74

overflow, underflow

1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 116 1/8 316 114 516 U8 716 172 5/8 ara A 1 5/

a2 T4

e computations too close to zero may result in underflow

e computations too large may result in overflow

overflow error is considered more severe

underflow can just fall back to 0

27

normalizing

If we use the normalized form in our 4-bit case, we lose 0.001, x 2~ 1.0:1
along with other. So we cannot represent %, %, and %.

T T T

| | | 1 | | 1 1 | | | | | | |

0 146 148 3/16 1/4 56 3/8 716 172 5/8 34 T8 1 5/4 e 74
T T T

1 | | 1 1 | | | | | | |

) 1/4 5116 3/8 16 112 5/8 34 T8 1 5/4 e 74

28

ieee-754 why this is important:

e |IEEE-754 is a widely used standard accepted by hardware/software
makers

e defines the floating point distribution for our computation
e offer several rounding modes which effect accuracy

e Floating point arithmetic emerges in nearly every piece of code

e even modest mathematical operation yield loss of significant bits
e several pitfalls in common mathematical expressions

29

ieee floating point (v. 754)

e How much storage do we actually use in practice?

e 32-bit word lengths are typical

e |IEEE Single-precision floating-point numbers use 32 bits
e |EEE Double-precision floating-point numbers use 64 bits

e Goal: use the 32-bits to best represent the normalized floating point

number
sign bit e)ﬁ)tl))li:?nl 123 bits)
HﬂﬂﬂﬂﬂﬂﬂMHMMEMMEMEMMEMH ~0.15625
31 ED 23 22 (bit index)
sign (11 bits) (52 bits)
bt exponent mantissa

52 "5 (bit index)

30

ieee single precision (marc-32)

x ==£qgx 2"

sign bit (B bits) {23 bits)
exponent

MﬂHﬂHHﬂﬂMHMMMMEMMMMMM ~0.1525

31 S0 23 22 (bit index)

Notes:

e 1-bit sign
e 8-bit exponent |m|
e 23-bit mantissa g
e The leading one in the mantissa g does not need to be represented:
b; = 1 is hidden bit
e |EEE 754: put x in 1.f normalized form
e 0 <m+ 127 =c < 255
e Largest exponent = 127, Smallest exponent = —126
e Special cases: ¢ = 0,255 a1

ieee single precision

x ==+q x 2"
Process for x = —52.125:

1. Convert both integer and fractional to binary:
x = —(110100.00100000000),

2. Convert to 1.f form: x = — (1.101000010000 ... 0), x 2°
N
1 23
3. Convert exponent 5 = ¢ — 127 = ¢ = 132 = ¢ = (10000 100),
—_—
8

1 10000100101000010000 ... 0
~ S —
1 8 23

32

ieee single precision

Special Cases:

e denormalized/subnormal numbers: use 1 extra bit in the significant:
exponent is now —126 (less precision, more range), indicated by
000000005 in the exponent field

e two zeros: +0 and —0 (0 mantissa, 0 exponent)
e two oco’s: +00 and —oo

e 0o (0 mantissa, 11111111, exponenet)

e NaN (any mantissa, 11111111, exponent)

e see appendix C.1 in NMC 6th ed.

33

ieee double precision

?lgn (11 bits) {52 bits)
it axponent mantissa
HIHH||HH||H|H||HH||HHIHHH||HHIHIHIHIIHIIHHI
on B2 57 51 (bit inde:x)

e 1-bit sign

e 11-bit exponent

e 52-bit mantissa

e single-precision: about 6 decimal digits of precision

double-precision: about 15 decimal digits of precision

e m=c—1023

34

precision vs. range

type range approx range
—3.40x10%® < x < -1.18 x 10~%
single 0 2-126 _, 2128

1.18 x 10738 < x < 3.40 x 1038

—1.80 x 10318 < x < —2.23 x 10308
double 0
2.23 x 107308 < x < 1.80 x 103%8

small numbers example

271022 N 21024

35

plus one example

36

Take x = 1.0 and add 1/2,1/4,...,27":

Hidden bit
I« 52 bits —
(1]zfofojofofojofofo]of0fe]e]
(1]of1foJofofoJofofo]of0fe]e]
[1]ofof1]ofofofofofofofofe]e]
(1]oJofofofofoofoJofof1]ele]
(1]ofofoJofofofofofofofofe]e]
e Ooops!

e use fI(x) to represent the floating point machine number for the real
number x

o fI(1+2752)£1, but fI(1+2753) =1

37

€m: machine epsilon

Machine epsilon €,, is the smallest number such that

fI(l+em) #1

e The double precision machine epsilon is about 27°2.

e The single precision machine epsilon is about 2723,

38

Floating Point Number Line

l— denormal —l

under- under-
flow flow

overflow usable range usable range overflow
- & — - -—
' iy ' {
1 I ! 1 \ 1
_10+308 _10-308 0 10-308 N\ 10+308
—realmax —realmin realmin \\\ realmax

\ /

\ . .

_ zoom-in view /

N /
- -

39

floating point errors

e Not all reals can be exactly represented as a machine floating point
number. Then what?

e Round-off error

e |EEE options:

e Round to next nearest FP (preferred), Round to 0, Round up, and
Round down

Let x, and x_ be the two floating point machine numbers closest to x

round to nearest: round(x) = x_ or x;, whichever is closest

round toward 0: round(x) = x_ or x4, whichever is between 0 and x
e round toward —oo (down): round(x) = x_

e round toward +oo (up): round(x) = x4

40

floating point errors

How big is this error? Suppose (x is closer to x_)

= (0.1byb3 ... bpabosbyg)2 x 2™
(O 1b2b3 b24)2 x 2™M

(0 1bybs .. b24)2 + 2724) x 2M
X — x|

Xy — x| m—25
=)
2
2m—25

x—x_| <

X — X_

< <27 —¢, /2
S1/2x2m = €m/

X

41

floating point arithmetic

e Problem: The set of representable machine numbers is FINITE.
e So not all math operations are well defined!

e Basic algebra breaks down in floating point arithmetic
Example

at+(b+c)#(a+b)+c

I N B | I I I I I I I
a 14 518 WG 6 12 98 34 TG 1 54 e T4

42

floating point arithmetic

Rule 1.
fi(x) = x(1+¢€), where |e] <en

Rule 2.
For all operations ® (one of +, —, x, /)

filx®y)=(xo0y)(l+ey), where |eg] <enm

Rule 3.

For +, % operations
fl(a® b) =fl(b® a)

There were many discussions on what conditions/rules should be satisfied
by floating point arithmetic. The IEEE standard is a set of standards
adopted by many CPU manufacturers. a3

floating point arithmetic

Consider the sum of 3 numbers: y =a+ b+ c.

Done as fI(fl(a + b) + ¢)

n flla+ b) = (a+ b)(L +e1)
o= filn+c)=m+c)(l+e)
= [(a+b)(1+e)+c](l+e)

= [(a+b+c)+(a+b)a)](l+e)
a+b

= b 14272
(a+b+) |1+ ————

61(1 + 62) + e

So disregarding the high order term €;e

fi(flla+b)+c)=(a+b+c)(l+e) with e~ 2

~a+b+c€1+€2

44

floating point arithmetic

If we redid the computation as y» = fl(a+ fI(b+ c)) we would find

flla+fllb+c))=(a+b+c)(l+e) with e~ Py +e
Main conclusion:

The first error is amplified by the factor (a + b)/y in the first case and
(b+ ¢)/y in the second case.

In order to sum n numbers more accurately, it is better to start with the
small numbers first. [However, sorting before adding is usually not worth

the cost!]

45

floating point arithmetic

One of the most serious problems in floating point arithmetic is that of
cancellation. If two large and close-by numbers are subtracted the result
(a small number) carries very few accurate digits (why?). This is fine if
the result is not reused. If the result is part of another calculation, then
there may be a serious problem

Example

Roots of the equation
x> 4+2px—q=0

Assume we want the root with smallest absolute value:

q
y=-pt VP Ta=
p+vVpP*+aq

46

catastrophic cancellation

Adding ¢ = a+ b will result in a large error if

e a>b
e akK b
Let
a=x.xxx---x 10°
b=y.yyy---x1078
finite precision
X XXX XXXX XXXX XXXX
Then + 0.0000000 yyyy yyyy yyyy yyyy
= X.XXX XXXX Zzzz zZZZ ~ 0?7?7°777
_—

lost precision

47

catastrophic cancellation

Subtracting ¢ = a — b will result in large error if a = b. For example

lost

—

a = X.xxxx xxxx xxx1 ssss ...
lost

—~
b = x.xxxx xxxx xxx0Q tttt...

finite precision
X XXX XXxx xxx 1
Then + xxooxoox xxx0
= 0.00000000001 77777777

lost precision

48

summary

e addition: c=a+bifa>bora<khb
e subtraction: c=a—bifax b

e catastrophic: caused by a single operation, not by an accumulation
of errors

e can often be fixed by mathematical rearrangement

49

loss of significance

Example
x = 0.3721448693 and y = 0.3720214371. What is the relative error in

Xx — y in a computer with 5 decimal digits of accuracy?

Ix —y — (X —y)| _ |0.3721448693 — 0.37202 14371 — 0.37214 + 0.37202)
B 0.37214 48693 — 0.37202 14371

Ix -yl
~ 3 x 1072

50

loss of significance

Loss of Precision Theorem
Let x and y be (normalized) floating point machine numbers with x >
y > 0.

If2=p <1 —% < 279 for positive integers p and g, the significant binary
digits lost in calculating x — y is between g and p.

51

loss of significance

Example
Consider x = 37.593621 and y = 37.584216.

P % —0.0002501754 < 212

So we lose 11 or 12 bits in the computation of x — y. yikes!

Example
Back to the other example (5 digits): x = 0.37214 and y = 0.37202.

107* < 1- % —0.00032 < 107°
So we lose 4 or 5 bits in the computation of x — y. Here, x —y = 0.00012

which has only 1 significant digit that we can be sure about

52

loss of significance

So what to do? Mainly rearrangement.

f(x):\/x27—|-1—1

53

loss of significance

So what to do? Mainly rearrangement.

f(x):\/x27—|-1—1

Problem at x =~ 0.

53

loss of significance

So what to do? Mainly rearrangement.

f(x):\/x27—|-1—1

Problem at x ~ 0.
One type of fix:

)= (Ve+1-1) <\/7”;j::>

X2
VX141
no subtraction!

53

