4

Randomness and Simulation

L. Olson
September 8, 2015

Department of Computer Science
University of lllinois at Urbana-Champaign

e randomness
e reproducibility

e designing an experiment

the scientific m

The Scientific Method as an Ongoing Process

Make
Observations

What do | see in nature?
This can be from one's
own experiences, thoughts,
or reading.

Develop
General Theories

General theories must be
consistent with most or all
available data and with other
current theories.

Think of
Interesting

Questions
Why does that
pattern occur?

Refine, Alter,
Expand, or Reject
Hypotheses

Gather Data to
Test Predictions

Relevant data can come from the
literature, new observations, or

formal experiments. Thorough
testing requires replication to
verify results.

Formulate
Hypotheses

What are the general
causes of the
phenomenon | am
wondering about?

Develop
Testable
Predictions

If my hypotesis is correct,
then | expect a, b, c,...

accuracy

e How do | classify my method?

e Goal: determine how the error |f(x) — p,(x)| behaves relative to n

(and f).
e Goal: determine how the cost of computing p,(x) behave relative to
n (and f).
e for f(x) = & we have
p,,:ZXk =14+x+x>+...
k=0
® so

en = F(x) — pa(x)|
e lse,~1/n"7

e Ise,~1/y/n?

e lse,~1/n!?

e mymethod () takes x seconds
e How long does it take in general?
e |f the data input is of size n, how long should it take?
27
® N f

e nl?
e 10"?

How to measure the impact of n on algorithmic cost?
o()
Let g(n) be a function of n. Then define

O(g(n)) ={f(n)|3c,ng >0 :0<f(n)<cg(n),Vn> no}

That is, f(n) € O(g(n)) if there is a constant ¢ such that 0 < f(n) <
cg(n) is satisfied.

e assume non-negative functions (otherwise add | - |) to the definitions

e f(n) € O(g(n)) represents an asymptotic upper bound on f(n) up
to a constant

e example: f(n) =3/n+2logn+8n+85n> € O(n?)

o()
Let g(n) be a function of n. Then define

O(g(n)) ={f(n)|3c,ng >0 : 0<f(n) < cg(n), Vn> no}

That is, f(n) € O(g(n)) if there is a constant ¢ such that 0 < f(n) <
cg(n) is satisfied.

cg(n)
f(n)

Q()

Let g(n) be a function of n. Then define

Q(g(n)) ={f(n)|3c,ng >0 : 0<cg(n) <f(n),Vn> ny}

Thatis, f(n) € Q(g(n)) if there is a constant ¢ such that 0 < cg(n) < f(n)
is satisfied.

o()

Let g(n) be a function of n. Then define

O(g(n)) ={f(n)|Jcr,c2,m0 >0 : 0 < c1g(n) < f(n) < cog(n), Vn> ng}

Equivalently, ©(g(n)) = O(g(n)) N Q(g(n)).

randomness

e Randomness = unpredictability

e One view: a sequence is random if it has no shorter description

e Physical processes, such as flipping a coin or tossing dice, are
deterministic with enough information about the governing
equations and initial conditions.

e But even for deterministic systems, sensitivity to the initial
conditions can render the behavior practically unpredictable.

e we need random simulation methods

http://www.xkcd.com/221/

int getRandomNumber ()

return 4. // chosen by foir dice roll.
J/ quaranteed to be random.

http://www.xkcd.com/221/

randomness is easy, right?

e In May, 2008, Debian announced a vulnerability with OpenSSL: the
OpenSSL pseudo-random number generator
e the seeding process was compromised (2 years)
e only 32,767 possible keys
e seeding based on process ID (this is not entropy!)
e all SSL and SSH keys from 9/2006 - 5/2008 regenerated
e all certificates recertified

e Cryptographically secure pseudorandom number generator
(CSPRNG) are necessary for some apps

e Other apps rely less on true randomness

repeatability

e With unpredictability, true randomness is not repeatable
e ...but lack of repeatability makes testing/debugging difficult

e So we want repeatability, but also independence of the trials

1 >>>> np.random.seed (1234)

pseudorandom numbers

Computer algorithms for random number generations are deterministic

e ...but may have long periodicity (a long time until an apparent

pattern emerges)
e These sequences are labeled pseudorandom

e Pseudorandom sequences are predictable and reproducible (this is

mostly good)

20

random number generators

Properties of a good random number generator:

Random pattern: passes statistical tests of randomness
Long period: long time before repeating
Efficiency: executes rapidly and with low storage
Repeatability: same sequence is generated using same initial states

Portability: same sequences are generated on different architectures

21

random number generators

e Early attempts relied on complexity to ensure randomness

e “midsquare” method: square each member of a sequence and take
the middle portion of the results as the next member of the sequence

e ...simple methods with a statistical basis are preferable

22

linear congruential generators

e Congruential random number generators are of the form:
X = (axk—1+¢c)(mod M)

where a and c are integers given as input.
e Xxp is called the seed
e Integer M is the largest integer representable (e.g. 231 — 1)
e Quality depends on a and c. The period will be at most M.

Example
Let a=13,c =0, m=31, and xp = 1.

1,13, 14, 27, 10, 6, ...

This is a permutation of integers from 1,...,30, so the period is m — 1.

23

e IBM used Scientific Subroutine Package (SSP) in the 1960's the
mainframes.

e Their random generator, rnd used a = 65539, ¢ =0, and m = 231
e arithmetic mod 23! is done quickly with 32 bit words.

e multiplication can be done quickly with a = 21 + 3 with a shift and
short add.

e Notice (mod m):
X2 = OxXpq1 — 9Ix

...strong correlation among three successive integers

24

e Matlab used a=7°, ¢ =0, and m = 231 — 1 for a while
e period is m— 1.

e this is no longer sufficient

25

Two popular methods:

1. Method of Marsaglia (period ~ 21430).

1 Initialize Xxp,...,x3 and ¢ to random values given a seed
3 Let s=2111111111x,_4 + 1492x,-31776x,—2 + 5115x,_1 + C
5 Compute X, =s mod 2%

7 ¢ = floor(s/2%)

2. rand() in Unix uses a = 1103515245, ¢ = 12345, m = 23,

Even the Marsaglia method produces points in n — D on only a small
number of hyperplanes.

26

linear congruential generators

e sensitive to a and ¢

be careful with supplied random functions on your system

period is M

standard division is necessary if generating floating points in [0, 1).

27

e produce floating-point random numbers directly using differences,
sums, or products.

e Typical subtractive generator:
Xk = Xk—17 — X5

with “lags” of 17 and 5.
e Lags much be chosen very carefully
e negative results need fixing
e more storage needed than congruential generators
e no division needed
e very very good statistical properties

e long periods since repetition does not imply a period

28

sampling over intervals

If we need a uniform distribution over [a, b), then we modify xx on [0, 1)
by
(b—a)xx+a

29

non-uniform distributions

e sampling nonuniform distributions is much more difficult

e if the cumulative distribution function is invertible, then we can
generate the non-uniform sample from the uniform:

f(t)=Xe ™, t>0

thus
vk = —log(1 — xk)/A
where x is uniform in [0, 1).

e ...not so easy in general

30

quasi-random sequences

e For some applications, reasonable uniform coverage of the sample is
more important than the “randomness”

e True random samples often exhibit clumping

e Perfectly uniform samples uses a uniform grid, but does not scale
well at high dimensions

e quasi-random sequences attempt randomness while maintaining

coverage

31

quasi-random sequences

e quasi random sequences are not random, but give random
appearance

e by design, the points avoid each other, resulting in no clumping

32

