Computing the Mean Is a Linear Least Squares Problem

In this example we demonstrate that computing the mean of student scores on an exam is a linear least squares problem, and in particular it amounts to an orthogonal projection from the high-dimensional space of the set of all sudents onto a one-dimensional space that conveys the overall performance of the class as a whole.

Suppose there are n students with test scores $t_{1}, t_{2}, \ldots, t_{n}$. Then the mean m is given by $m=\left(\sum_{i=1}^{n} t_{i}\right) / n$. Let the test scores be the entries of a vector $\boldsymbol{t} \in \mathbb{R}^{n}$, and let \boldsymbol{e} be the n-vector having all entries equal to 1 . We will now show that computing the mean is equivalent to solving the $n \times 1$ linear least squares problem

$$
\boldsymbol{e} m \cong \boldsymbol{t} .
$$

In other words, the problem has the form $\boldsymbol{A} \boldsymbol{x} \cong \boldsymbol{b}$, where in this case matrix \boldsymbol{A} is $n \times 1, \boldsymbol{x}$ is a scalar, and $\boldsymbol{b} \in \mathbb{R}^{n}$. To solve this problem we use the normal equations to obtain

$$
\boldsymbol{x}=\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T} b=\left(\boldsymbol{e}^{T} \boldsymbol{e}\right)^{-1} \boldsymbol{e}^{T} \boldsymbol{t}=(1 / n)\left(\sum_{i=1}^{n} t_{i}\right)=m .
$$

Thus, the solution to the linear least squares problem is simply the mean score, m. To obtain the orthogonal projector \boldsymbol{P}, we compute

$$
\left.\boldsymbol{P}=\boldsymbol{A}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1}\right) \boldsymbol{A}^{T}=\boldsymbol{e}(1 / n) \boldsymbol{e}^{T}=(1 / n) \boldsymbol{e} \boldsymbol{e}^{T} .
$$

To verify that \boldsymbol{P} is indeed an orthogonal projector, we observe that it is obviously symmetric, and it is also idempotent, since

$$
\boldsymbol{P}^{2}=(1 / n) \boldsymbol{e} \boldsymbol{e}^{T}(1 / n) \boldsymbol{e} \boldsymbol{e}^{T}=\left(1 / n^{2}\right) \boldsymbol{e}\left(\boldsymbol{e}^{T} \boldsymbol{e}\right) \boldsymbol{e}^{T}=\left(1 / n^{2}\right) n \boldsymbol{e} \boldsymbol{e}^{T}=(1 / n) \boldsymbol{e} \boldsymbol{e}^{T}=\boldsymbol{P} .
$$

To demonstrate that \boldsymbol{P} actually works, we compute

$$
\boldsymbol{P} \boldsymbol{b}=(1 / n) \boldsymbol{e} \boldsymbol{e}^{T} \boldsymbol{t}=(1 / n) \boldsymbol{e}\left(\sum_{i=1}^{n} t_{i}\right)=\boldsymbol{e} m=\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}
$$

the vector in $\operatorname{span}(\boldsymbol{A})=\operatorname{span}(\boldsymbol{e})$ closest to \boldsymbol{t} in the 2-norm.

