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Least Squares Data Fitting
Existence, Uniqueness, and Conditioning

Solving Linear Least Squares Problems

Least Squares
Data Fitting

Method of Least Squares

Measurement errors are inevitable in observational and
experimental sciences

Errors can be smoothed out by averaging over many
cases, i.e., taking more measurements than are strictly
necessary to determine parameters of system

Resulting system is overdetermined, so usually there is no
exact solution

In effect, higher dimensional data are projected into lower
dimensional space to suppress irrelevant detail

Such projection is most conveniently accomplished by
method of least squares
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Least Squares Data Fitting
Existence, Uniqueness, and Conditioning

Solving Linear Least Squares Problems

Least Squares
Data Fitting

Linear Least Squares

For linear problems, we obtain overdetermined linear
system Ax = b, with m⇥ n matrix A, m > n

System is better written Ax ⇠
=

b, since equality is usually
not exactly satisfiable when m > n

Least squares solution x minimizes squared Euclidean
norm of residual vector r = b�Ax,

min

x

krk2
2

= min

x

kb�Axk2
2

Michael T. Heath Scientific Computing 4 / 61



Least Squares Idea  

This system is overdetermined. 
 
There are more equations than unknowns. 



Least Squares Idea  

❑  With m > n, we have: 
❑  Lots of data ( b ) 
❑  A few parameters  (  



Most Important Picture 

❑  The vector y is the orthogonal projection of b onto span(A). 

❑  The projection results in minimization of || r ||2 , which, as we shall see, 
is equivalent to having  r := b – Ax   ? span(A) 

Least Squares Data Fitting
Existence, Uniqueness, and Conditioning

Solving Linear Least Squares Problems

Existence and Uniqueness
Orthogonality
Conditioning

Orthogonality, continued

Geometric relationships among b, r, and span(A) are
shown in diagram
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1D Projection

• Consider the 1D subspace of lR2 spanned by a1:

↵a1 2 span{a1}.

• The projection of a point b 2 lR2 onto span{a1} is the point on
the line y = ↵a1 that is closest to b.

• To find the projection, we look for the value ↵ that minimizes
||r|| = ||↵a1 � b|| in the 2-norm. (Other norms are also possible.)

a1

↵a1
b

b� ↵a1

a1

y = ↵a1

b

r = b� ↵a1



1D Projection

• Minimizing the square of the residual with respect to ↵, we have

d

d↵
||r||2 =

=
d

d↵
(b � ↵a1)

T (b � ↵a1)

=
d

d↵

⇥
bTb + ↵2 aT1 a1 � 2↵ aT1 b

⇤

= 2↵ aT1 a1 � 2 aT1 b = 0

• For this to be a minimum, we require the last expression to be zero,
which implies

↵ =
aT1 b

aT1 a1
, =) y = ↵a1 =

aT1 b

aT1 a1
a1.

• We see that y points in the direction of a1 and has magnitude that scales
as b (but not with a1).

• Note that the numerator in the expression above can be zero; the de-
nominator cannot unless a1 = 0.



Projection in Higher Dimensions

• Here, we have basis coe�cients xi written as x = [x1 . . . xn]T .

• As before, we minimize the square of the norm of the residual

||r||2 = ||Ax� b||2

= (Ax � b)T (Ax � b)

= bTb � bTAx � (Ax)T b + xTATAx

= bTb + xTATAx � 2xTATb.

• As in the 1D case, we require stationarity with respect to all coe�cients

d

dxi
||r||2 = 0

• The first term is constant.

• The second and third are more complex.



Projection in Higher Dimensions

• Define c = ATb and H = ATA such that

xTATb = xTc = x1c1 + x2c2 + . . . xncn.

xTATAx = xTHx =
nX

j=1

nX

k=1

xkHkjxj

• Di↵erentiating with respect to xi,

d

dxi

�
xTATb

�
= ci =

�
ATb

�
i
, and

d

dxi

�
xTHx

�
=

nX

j=1

Hijxj +
nX

k=1

xk Hki

= 2
nX

j=1

Hij xj = 2 (Hx)i .



Projection in Higher Dimensions

• From the preceding pages, the minimum is realized when

0 =
d

dxi

�
xTATAx � 2xTATb

�
= 2

�
ATAx � ATb

�
i
, i = 1, . . . , n

• Or, in matrix form:

x =
�
ATA

��1
ATb.

• As in the 1D case, our projection is

y = Ax = A
�
ATA

��1
ATb.

• y has units and length that scale with b, but it lies in the range of A.

• It is the projection of b onto R(A).

Note: (ATA)-1 exists as long as the columns of A are independent. 



Important Example: Weighted Least Squares

• Standard inner-product:

(u, v)2 :=
mX

i=1

ui vi = u

T
v,

||r||22 =
mX

i=1

r

2
i = r

T
r,

• Consider weighted inner-product:

(u, v)W :=
mX

i=1

uiwi vi = u

T
Wv, where

W =

2

6664

w1

w2
. . .

wm

3

7775
, wi > 0.

||r||2w =
mX

i=1

wir
2
i = r

T
Wr,



• If we want to minimize in a weighted norm:

Find x 2 lRn
such that ||r||2W is minimized.

• Require

d

dxi

h
(b � Ax)T W (b � Ax)

i

=
d

dxi

⇥
b

T
Wb + x

T
A

T
WAx � x

T
A

T
Wb� b

T
WAx

⇤

=
d

dxi

⇥
x

T
A

T
WAx � 2xT

A

T
Wb

⇤

= 0.

• Thus,
x =

�
A

T
WA

��1
A

T
Wb,

y = Ax = A

�
A

T
WA

��1
A

T
Wb, ⇡ b.

• y is the weighted least-squares approximation to b.

• Works for any SPD W , not just (positive) diagonal ones.

• Can be used to solve linear systems.



Using Least Squares to Solve Linear Systems

• In particular, suppose Wb = z.

• Linear system — z is right-hand side, known.
— b is unknown.

• Want to find weighted least-squares fit, y ⇡ b, minimizing
||y � b ||2W with y 2 R(A).

• Answer:

y = A

�
A

T
WA

��1
A

T
Wb

= A

�
A

T
WA

��1
A

T
z

= Ax

ß  Here, we approximate b=W-1z  
without knowing b.  We only need 
matrix-vector products of the form 
Waj  plus some means of 
effecting inversion of the small 
nxn matrix, ATWA. 



Using Least Squares to Solve Linear Systems

• Suppose W is a sparse m⇥m matrix with (say) m > 106.

• Factor cost is likely very large (superlinear in m).

• If A = (a1 a2 · · · an), n ⌧ m, can form n vectors,

WA = (Wa1Wa2 · · · Wan),

and the Gram matrix, W̃ = A

T
WA = [aTi Waj], and solve

W̃x = A

T
z =

0

BBB@

a

T
1 z

a

T
2 z
...

a

T
nz

1

CCCA
,

which requires solution of a small n⇥ n system, W̃ .



Using Least Squares to Solve Linear Systems

• Once we have x,

y = Ax =
nX

j=1

aj xj ⇡ b := W

�1
z.

• So, weighted inner-product allows us to approximate b, the solution to
Wb = z, without knowing b !

• Approximate solution y 2 R(A) = span{a1 a2 · · · an} :

y = A

�
A

T
WA

��1
A

T
z

• y is the projection of b onto R(A),
– the closest approximation or best fit in R(A) in the W -norm.

XXXXXXXXXXXXXXXXXX

������������XXXXXXXXXXXXXXXXXX

������������W
⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠:6

-R(A)
r

y

b

• r is W -orthogonal to R(A). ! rTWA = 0. 



Using Least Squares to Solve Linear Systems

• Very often can have accurate approximations with n ⌧ m.

• In particular, if  :=cond(W ), and

R(A) = span{Wb, W

2
b, · · · ,W k

b}
= span{z, Wz, · · · ,W k�1

z},

then can have an accurate answer with k ⇡
p
.

• Can keep increasing R(A) with additional matrix-vector products.

• This method corresponds to conjugate gradient iteration applied to the
SPD system Wb = z.



Back to Standard Least Squares 

❑  Suppose we have observational data, { bi }  at some independent 
times { ti }  (red circles). 

❑  The ti s do not need to be sorted and can in fact be repeated. 

❑  We wish to fit a smooth model (blue curve) to the data so we can 
compactly describe (and perhaps integrate or differentiate) the 
functional relationship between b(t) and t. 



Example 



Matlab Example 
% Linear Least Squares Demo 
 
degree=3; m=20; n=degree+1; 
 
t=3*(rand(m,1)-0.5); 
b = t.^3 - t; b=b+0.2*rand(m,1); %% Expect:  x =~ [ 0 -1  0 1 ] 
 
plot(t,b,'ro'), pause 
 
 
%%% DEFINE a_ij = phi_j(t_i) 
 
A=zeros(m,n); for j=1:n; A(:,j) = t.^(j-1); end; 
 
A0=A; b0=b;  % Save A & b. 
 
 
%%%%  SOLVE LEAST SQUARES PROBLEM via Normal Equations &&&& 
 
x = (A'*A) \ A'*b 
 
plot(t,b0,'ro',t,A0*x,'bo',t,1*(b0-A0*x),'kx'), pause 
plot(t,A0*x,'bo'), pause 
 
%% CONSTRUCT SMOOTH APPROXIMATION 
 
tt=(0:100)'/100; tt=min(t) + (max(t)-min(t))*tt; 
S=zeros(101,n); for k=1:n; S(:,k) = tt.^(k-1); end; 
s=S*x; 
 
plot(t,b0,'ro',tt,s,'b-') 
title('Least Squares Model Fitting to Cubic') 
xlabel('Independent Variable, t') 
ylabel('Dependent Variable b_i and y(t)') 
 



Python Least Squares Example 

. . . 

. . . 



Note on the text examples 

❑  Note, the text uses similar examples. 

❑  The notation in the examples is a bit different from the rest of the 
derivation… so be sure to pay attention. 
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Least Squares
Data Fitting

Data Fitting

Given m data points (t

i

, y

i

), find n-vector x of parameters
that gives “best fit” to model function f(t,x),

min

x

mX

i=1

(y

i

� f(t

i

,x))2

Problem is linear if function f is linear in components of x,

f(t,x) = x

1

�

1

(t) + x

2

�

2

(t) + · · ·+ x

n

�

n

(t)

where functions �

j

depend only on t

Problem can be written in matrix form as Ax ⇠
=

b, with
a

ij

= �

j

(t

i

) and b

i

= y

i
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Data Fitting

Polynomial fitting

f(t,x) = x

1

+ x

2

t+ x

3

t

2

+ · · ·+ x

n

t

n�1

is linear, since polynomial linear in coefficients, though
nonlinear in independent variable t

Fitting sum of exponentials

f(t,x) = x

1

e

x2t
+ · · ·+ x

n�1

e

xnt

is example of nonlinear problem

For now, we will consider only linear least squares
problems
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Least Squares
Data Fitting

Example: Data Fitting

Fitting quadratic polynomial to five data points gives linear
least squares problem

Ax =

2

66664

1 t

1

t

2

1

1 t

2

t

2

2

1 t

3

t

2

3

1 t

4

t

2

4

1 t

5

t

2

5

3

77775

2

4
x

1

x

2

x

3

3

5 ⇠
=

2

66664

y

1

y

2

y

3

y

4

y

5

3

77775
= b

Matrix whose columns (or rows) are successive powers of
independent variable is called Vandermonde matrix
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Least Squares
Data Fitting

Example, continued

For data
t �1.0 �0.5 0.0 0.5 1.0

y 1.0 0.5 0.0 0.5 2.0

overdetermined 5⇥ 3 linear system is

Ax =

2

66664

1 �1.0 1.0

1 �0.5 0.25

1 0.0 0.0

1 0.5 0.25

1 1.0 1.0

3

77775

2

4
x

1

x

2

x

3

3

5 ⇠
=

2

66664

1.0

0.5

0.0

0.5

2.0

3

77775
= b

Solution, which we will see later how to compute, is

x =

⇥
0.086 0.40 1.4

⇤
T

so approximating polynomial is

p(t) = 0.086 + 0.4t+ 1.4t

2
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Least Squares
Data Fitting

Example, continued

Resulting curve and original data points are shown in graph

< interactive example >
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Conditioning

Existence and Uniqueness

Linear least squares problem Ax ⇠
=

b always has solution

Solution is unique if, and only if, columns of A are linearly
independent, i.e., rank(A) = n, where A is m⇥ n

If rank(A) < n, then A is rank-deficient, and solution of
linear least squares problem is not unique

For now, we assume A has full column rank n

Michael T. Heath Scientific Computing 10 / 61

Note: The minimizer, y, is unique. 



Least Squares Data Fitting
Existence, Uniqueness, and Conditioning

Solving Linear Least Squares Problems

Existence and Uniqueness
Orthogonality
Conditioning

Normal Equations

To minimize squared Euclidean norm of residual vector

krk2
2

= rTr = (b�Ax)T (b�Ax)

= bTb� 2xTATb+ xTATAx

take derivative with respect to x and set it to 0,

2ATAx� 2ATb = 0

which reduces to n⇥ n linear system of normal equations

ATAx = ATb
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Orthogonality
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Orthogonality

Vectors v
1

and v
2

are orthogonal if their inner product is
zero, vT

1

v
2

= 0

Space spanned by columns of m⇥ n matrix A,
span(A) = {Ax : x 2 Rn}, is of dimension at most n

If m > n, b generally does not lie in span(A), so there is no
exact solution to Ax = b

Vector y = Ax in span(A) closest to b in 2-norm occurs
when residual r = b�Ax is orthogonal to span(A),

0 = ATr = AT

(b�Ax)

again giving system of normal equations

ATAx = ATb
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Existence and Uniqueness
Orthogonality
Conditioning

Orthogonality, continued

Geometric relationships among b, r, and span(A) are
shown in diagram
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Existence and Uniqueness
Orthogonality
Conditioning

Orthogonal Projectors

Matrix P is orthogonal projector if it is idempotent
(P 2

= P ) and symmetric (P T

= P )

Orthogonal projector onto orthogonal complement
span(P )

? is given by P? = I � P

For any vector v,

v = (P + (I � P )) v = Pv + P?v

For least squares problem Ax ⇠
=

b, if rank(A) = n, then

P = A(ATA)

�1AT

is orthogonal projector onto span(A), and

b = Pb+ P?b = Ax+ (b�Ax) = y + r
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Existence and Uniqueness
Orthogonality
Conditioning

Pseudoinverse and Condition Number

Nonsquare m⇥ n matrix A has no inverse in usual sense

If rank(A) = n, pseudoinverse is defined by

A+

= (ATA)

�1AT

and condition number by

cond(A) = kAk
2

· kA+k
2

By convention, cond(A) = 1 if rank(A) < n

Just as condition number of square matrix measures
closeness to singularity, condition number of rectangular
matrix measures closeness to rank deficiency

Least squares solution of Ax ⇠
=

b is given by x = A+ b
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Existence and Uniqueness
Orthogonality
Conditioning

Sensitivity and Conditioning

Sensitivity of least squares solution to Ax ⇠
=

b depends on
b as well as A

Define angle ✓ between b and y = Ax by

cos(✓) =

kyk
2

kbk
2

=

kAxk
2

kbk
2

Bound on perturbation �x in solution x due to perturbation
�b in b is given by

k�xk
2

kxk
2

 cond(A)

1

cos(✓)

k�bk
2

kbk
2
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Existence and Uniqueness
Orthogonality
Conditioning

Sensitivity and Conditioning, contnued

Similarly, for perturbation E in matrix A,

k�xk
2

kxk
2

/
�
[cond(A)]

2

tan(✓) + cond(A)

� kEk
2

kAk
2

Condition number of least squares solution is about
cond(A) if residual is small, but can be squared or
arbitrarily worse for large residual
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Solving Linear Least Squares Problems

Normal Equations
Orthogonal Methods
SVD

Normal Equations Method

If m⇥ n matrix A has rank n, then symmetric n⇥ n matrix
ATA is positive definite, so its Cholesky factorization

ATA = LLT

can be used to obtain solution x to system of normal
equations

ATAx = ATb

which has same solution as linear least squares problem
Ax ⇠

=

b

Normal equations method involves transformations

rectangular �! square �! triangular
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Spoiler: Normal Equations not Recommended 

❑  So far, our examples have used normal equations approach, as do the next 
examples. 

❑  After the introduction, most of this chapter is devoted to better methods in 
which columns of A are first orthogonalized. 

❑  Orthogonalization methods of choice: 

❑  Householder transformations   (very stable) 
❑  Givens rotations      (stable; cheap if A is sparse) 
❑  Gram-Schmidt       (better than normal eqns, but not great) 
❑  Modified Gram-Schmidt     (better than “classical” Gram-Schmidt) 



Least Squares Data Fitting
Existence, Uniqueness, and Conditioning

Solving Linear Least Squares Problems

Normal Equations
Orthogonal Methods
SVD

Example: Normal Equations Method
For polynomial data-fitting example given previously,
normal equations method gives

ATA =

2

4
1 1 1 1 1

�1.0 �0.5 0.0 0.5 1.0

1.0 0.25 0.0 0.25 1.0

3

5

2

66664

1 �1.0 1.0

1 �0.5 0.25

1 0.0 0.0

1 0.5 0.25

1 1.0 1.0

3

77775

=

2

4
5.0 0.0 2.5

0.0 2.5 0.0

2.5 0.0 2.125

3

5
,

ATb =

2

4
1 1 1 1 1

�1.0 �0.5 0.0 0.5 1.0

1.0 0.25 0.0 0.25 1.0

3

5

2

66664

1.0

0.5

0.0

0.5

2.0

3

77775
=

2

4
4.0

1.0

3.25

3

5

Michael T. Heath Scientific Computing 19 / 61



Least Squares Data Fitting
Existence, Uniqueness, and Conditioning
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Normal Equations
Orthogonal Methods
SVD

Example, continued

Cholesky factorization of symmetric positive definite matrix
ATA gives

ATA =

2

4
5.0 0.0 2.5

0.0 2.5 0.0

2.5 0.0 2.125

3

5

=

2

4
2.236 0 0

0 1.581 0

1.118 0 0.935

3

5

2

4
2.236 0 1.118

0 1.581 0

0 0 0.935

3

5
= LLT

Solving lower triangular system Lz = ATb by
forward-substitution gives z =

⇥
1.789 0.632 1.336

⇤
T

Solving upper triangular system LTx = z by
back-substitution gives x =

⇥
0.086 0.400 1.429

⇤
T
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Normal Equations
Orthogonal Methods
SVD

Shortcomings of Normal Equations

Information can be lost in forming ATA and ATb

For example, take

A =

2

4
1 1

✏ 0

0 ✏

3

5

where ✏ is positive number smaller than p
✏mach

Then in floating-point arithmetic

ATA =


1 + ✏

2

1

1 1 + ✏

2

�
=


1 1

1 1

�

which is singular
Sensitivity of solution is also worsened, since

cond(ATA) = [cond(A)]

2
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❑  Avoid normal equations: 

❑ ATA x  = ATb 

❑  Instead, orthogonalize columns of A 

❑ Ax  = QRx ¼ b 

❑  Columns of Q are orthonormal;  R is upper triangular 
❑  Since span(A)=span(Q), we get the same miminizer, y. 



Projection, QR Factorization, Gram-Schmidt

• Recall our linear least squares problem:

y = Ax ⇡ b,

which is equivalent to minimization / orthogonal projection:

r := b � Ax ? R(A)

||r||2 = ||b � y||2  ||b � v||2 8v 2 R(A).

• This problem has solutions

x =

�
ATA

��1
AT b

y = A
�
ATA

��1
AT b = P b,

where P := A
�
ATA

��1
AT

is the orthogonal projector onto R(A).



Observations

�
ATA

�
x = AT b =

0

BBBBBBB@

aT1 b

aT2 b

.

.

.

aTnb

1

CCCCCCCA

�
ATA

�
=

0

BBBBBBB@

aT1 a1 aT1 a2 · · · aT1 an

aT2 a1 aT2 a2 · · · aT2 an

.

.

.

.

.

.

aTna1 aTna2 · · · aTnan

1

CCCCCCCA

.



Orthogonal Bases

• If the columns of A were orthogonal, such that aij = aTi aj = 0 for i 6= j,

then ATA is a diagonal matrix,

�
ATA

�
=

0

BBBBBBB@

aT1 a1

aT2 a2

.

.

.

aTnan

1

CCCCCCCA

,

and the system is easily solved,

x =

�
ATA

��1
AT b =

0

BBBBBBB@

1
aT1 a1

1
aT2 a2

.

.

.

1
aTnan

1

CCCCCCCA

0

BBBBBBB@

aT1 b

aT2 b

.

.

.

aTnb

1

CCCCCCCA

.

• In this case, we can write the projection in closed form:

y =

nX

j=1

xj aj =

nX

j=1

aTj b

aTj aj
aj . (1)

• For orthogonal bases, (1) is the projection of b onto span{a1, a2, . . . , an}.



Orthonormal Bases

• If the columns are orthogonal and normalized such that ||aj|| = 1,

we then have aTj aj = 1, or more generally

aTi aj = �ij, with �ij :=

(
1, i = j

0, i 6= j
the Kronecker delta,

• In this case, ATA = I and the orthogonal projection is given by

y = AAT b =

nX

j=1

aj
�
aTj b

�
.

Example: Suppose our model fit is based on sine functions,

sampled uniformly on [0, ⇡]:

�j(t) =

p
2h sin j ti , ti = i · h, i = 1, . . . ,m; h :=

⇡

m+ 1

.

In this case,

A = ( �1(ti) �2(ti) · · · �n(ti) ) ,

ATA = I.



QR Factorization

• Generally, we don’t a priori have orthonormal bases.

• We can construct them, however. The process is referred to as QR

factorization.

• We seek factors Q and R such that QR = A with Q orthogonal (or,

unitary, in the complex case).

• There are two cases of interest:

Reduced QR

Q1

R
= A

Full QR

Q

R

O
= A

• Note that

A = Q


R

O

�
=

⇥
Q1 Q2

⇤  R

O

�
= Q1R.

• The columns of Q1 form an orthonormal basis for R(A).

• The columns of Q2 form an orthonormal basis for R(A)?.





QR Factorization: Gram-Schmidt

• We’ll look at three approaches to QR:

– Gram-Schmidt Orthogonalization,

– Householder Transformations, and

– Givens Rotations

• We start with Gram-Schmidt - which is most intuitive.

• We are interested in generating orthogonal subspaces that match the
nested column spaces of A,

span{ a1 } = span{q1 }

span{ a1, a2 } = span{q1, q2 }

span{ a1, a2, a3 } = span{q1, q2, q3 }

span{ a1, a2, . . . , an } = span{q1, q2, . . . , qn }



QR Factorization: Gram-Schmidt

• It’s clear that the conditions

span{ a1 } = span{q1 }

span{ a1, a2 } = span{q1, q2 }

span{ a1, a2, a3 } = span{q1, q2, q3 }

span{ a1, a2, . . . , an } = span{q1, q2, . . . , qn }

are equivalent to the equations

a1 = q1 r11

a2 = q1 r12 + q2 r22

a3 = q1 r13 + q2 r23 + q3 r33

... =
... + · · ·

an = q1 r1n + q2 r2n + · · · + qn rnn

i.e., A = QR

(For now, we drop the distinction between Q and Q1, and focus only on
the reduced QR problem.)



Gram-Schmidt Orthogonalization

• The preceding relationship suggests the first algorithm.

Let Qj�1 := [q1 q2 . . .qj�1] , Pj�1 := Qj Q
T
j�1, P?,j�1 := I � Pj�1.

for j = 2, . . . , n� 1

vj = aj � Pj�1 aj = (I � Pj�1) aj = P?,j�1 aj

qj =
vj

||vj||
=

P?,j�1aj
||P?,j�1aj||

end

• This is Gram-Schmidt orthogonalization.

• Each new vector qj starts with aj and subtracts o↵ the projection onto
R(Qj�1), followed by normalization.



Classical Gram-Schmidt Orthogonalization 

XXXXXXXXXXXXXXXXXXXX
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⌘

⌘
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⌘
⌘
⌘

⌘⌘36

-XXXXz
q
1

�
�
�✓

q
2

R(Q2)

a3

r33q3

P2a3

P2a3 = Q2Q
T
2 a3

= q
1

qT
1
a3

qT
1
q
1

+ q
2

qT
2
a3

qT
2
q
2

= q
1
qT
1
a3 + q

2
qT
2
a3

In general, if Qk is an orthogonal matrix, then

Pk = QkQT
k is an orthogonal projector onto R(Qk)

5



Gram-Schmidt: Classical vs. Modified

• We take a closer look at the projection step, vj = aj � Pj�1 aj.

• The classical (unstable) GS projection is executed as

vj = aj

for k = 1, . . . , j � 1,

vj = vj � qk

�
qT
k aj

�

end

• The modified GS projection is executed as

vj = aj

for k = 1, . . . , j � 1,

vj = vj � qk

�
qT
kvj

�

end



Mathematical Di↵erence Between CGS and MGS

• Let P̃k, := qkq
T
k (This is an m⇥m matrix of what rank?)

• The CGS projection step amounts to

vj = aj � P̃1aj � P̃2aj � · · · � P̃j�1aj

= aj �
j�1X

k=1

P̃k aj.

• The MGS projection step is equivalent to

vj =
⇣
I � P̃j�1

⌘ ⇣
I � P̃j�2

⌘
· · ·

⇣
I � P̃1

⌘
aj

=
j�1Y

k=1

⇣
I � P̃k

⌘
aj

Note: P̃kP̃j = 0, if k 6= j.



MGS is an example of the idea that “small corrections 
are preferred to large ones: 
  
Better to update v by subtracting off the projection of v, 
rather than the projection of a. 

Mathematical Di↵erence Between CGS and MGS

• Lack of associativity in floating point arithmetic drives the di↵erence
between CGS and MGS.

• Conceptually, MGS projects the remaining residual rather than the orig-
inal aj.

• As we shall see, neither GS nor MGS are as robust as
Householder transformations.

• Both, however, can be cleaned up with a second-pass through the
orthogonalization process. (Just set A = Q and repeat, once.)



Least Squares Data Fitting
Existence, Uniqueness, and Conditioning

Solving Linear Least Squares Problems

Normal Equations
Orthogonal Methods
SVD

Gram-Schmidt Orthogonalization

Given vectors a
1

and a
2

, we seek orthonormal vectors q
1

and q
2

having same span

This can be accomplished by subtracting from second
vector its projection onto first vector and normalizing both
resulting vectors, as shown in diagram

< interactive example >
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Gram-Schmidt Orthogonalization

Process can be extended to any number of vectors
a
1

, . . . ,a
k

, orthogonalizing each successive vector against
all preceding ones, giving classical Gram-Schmidt
procedure

for k = 1 to n

q
k

= a
k

for j = 1 to k � 1

r

jk

= qT
j

a
k

q
k

= q
k

� r

jk

q
j

end

r

kk

= kq
k

k
2

q
k

= q
k

/r

kk

end

Resulting q
k

and r

jk

form reduced QR factorization of A

Michael T. Heath Scientific Computing 45 / 61

! Coefficient involves original ak 
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Modified Gram-Schmidt

Classical Gram-Schmidt procedure often suffers loss of
orthogonality in finite-precision

Also, separate storage is required for A, Q, and R, since
original a

k

are needed in inner loop, so q
k

cannot overwrite
columns of A

Both deficiencies are improved by modified Gram-Schmidt
procedure, with each vector orthogonalized in turn against
all subsequent vectors, so q

k

can overwrite a
k
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Modified Gram-Schmidt QR Factorization

Modified Gram-Schmidt algorithm

for k = 1 to n

r

kk

= ka
k

k
2

q
k

= a
k

/r

kk

for j = k + 1 to n

r

kj

= qT
k

a
j

a
j

= a
j

� r

kj

q
k

end

end

< interactive example >

Michael T. Heath Scientific Computing 47 / 61

Matlab Demo:  house.m 

! Coefficient involves modified aj 



Gram-Schmidt Examples 

❑  Here we consider a matrix that is not well-conditioned. 



Classical & Modified GS:  Notes 



Classical & Modified GS:  Notes 



Householder Transformations:  Notes 
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Orthogonal Transformations

We seek alternative method that avoids numerical
difficulties of normal equations
We need numerically robust transformation that produces
easier problem without changing solution
What kind of transformation leaves least squares solution
unchanged?

Square matrix Q is orthogonal if QTQ = I

Multiplication of vector by orthogonal matrix preserves
Euclidean norm

kQvk2
2

= (Qv)TQv = vTQTQv = vTv = kvk2
2

Thus, multiplying both sides of least squares problem by
orthogonal matrix does not change its solution
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Triangular Least Squares Problems

As with square linear systems, suitable target in simplifying
least squares problems is triangular form

Upper triangular overdetermined (m > n) least squares
problem has form 

R
O

�
x ⇠
=


b
1

b
2

�

where R is n⇥ n upper triangular and b is partitioned
similarly

Residual is
krk2

2

= kb
1

�Rxk2
2

+ kb
2

k2
2
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Triangular Least Squares Problems, continued

We have no control over second term, kb
2

k2
2

, but first term
becomes zero if x satisfies n⇥ n triangular system

Rx = b
1

which can be solved by back-substitution

Resulting x is least squares solution, and minimum sum of
squares is

krk2
2

= kb
2

k2
2

So our strategy is to transform general least squares
problem to triangular form using orthogonal transformation
so that least squares solution is preserved
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QR Factorization
Given m⇥ n matrix A, with m > n, we seek m⇥m

orthogonal matrix Q such that

A = Q


R
O

�

where R is n⇥ n and upper triangular
Linear least squares problem Ax ⇠

=

b is then transformed
into triangular least squares problem

QTAx =


R
O

�
x ⇠
=


c
1

c
2

�
= QTb

which has same solution, since

krk2
2

= kb�Axk2
2

= kb�Q


R
O

�
xk2

2

= kQTb�

R
O

�
xk2

2
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Orthogonal Bases

If we partition m⇥m orthogonal matrix Q = [Q
1

Q
2

],
where Q

1

is m⇥ n, then

A = Q


R
O

�
= [Q

1

Q
2

]


R
O

�
= Q

1

R

is called reduced QR factorization of A

Columns of Q
1

are orthonormal basis for span(A), and
columns of Q

2

are orthonormal basis for span(A)

?

Q
1

QT

1

is orthogonal projector onto span(A)

Solution to least squares problem Ax ⇠
=

b is given by
solution to square system

QT

1

Ax = Rx = c
1

= QT

1

b
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QR for Solving Least Squares

• Start with Ax ⇡ b

Q


R
O

�
x ⇡ b

QTQ


R
O

�
x =


R
O

�
x ⇡ QT

b = [Q1Q2] b =


c1

c2

�
.

• Define the residual,

r := b � y = b � Ax

||r|| = ||b � Ax||

= ||QT
(b � Ax) ||

=

����

����

✓
c1

c2

◆
�

✓
Rx

O

◆����

����

=

����

����
(c1 �Rx)

c2

����

����

||r||2 = ||c1 � Rx||2 + ||c2||2

• Norm of residual is minimized when Rx = c1 = QT
1 b, and

takes on value ||r|| = ||c2||.

T 



QR Factorization and Least Squares Review

• Recall: Ax ⇡ b.

A = QR or A = [Ql Qr]


R
O

�
,

with Q̃ := [Ql Qr] square.

• If Q̂ and Q̃ are m⇥m orthogonal matrices, then Q̂Q̃ is also orthogonal.

• Least squares problem: Find x such that

r := (QRx � b) ? range(A) ⌘ range(Q).

0 = QT
r = QTQRx � QT

b

Rx = QT
b

x = R�1QT
b.

• Can solve least squares problem by finding QR = A.



• Projection,
y = Ax

= QRx

= QQT
b

= Q(QTQ)�1QT
b

= projection onto R(Q).

• Compare with normal equation approach:

y = A(ATA)�1AT
b

= projection onto R(A) ⌘ R(Q).

• Here, QQT and A(ATA)�1AT are both projectors.

• QQT is generally better conditioned than the normal eqution approach.

Here, Q is the “reduced Q” matrix. 
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Computing QR Factorization

To compute QR factorization of m⇥ n matrix A, with
m > n, we annihilate subdiagonal entries of successive
columns of A, eventually reaching upper triangular form

Similar to LU factorization by Gaussian elimination, but use
orthogonal transformations instead of elementary
elimination matrices

Possible methods include
Householder transformations
Givens rotations
Gram-Schmidt orthogonalization
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Method 2:  Householder Transformations 



QR Householder Preliminaries

• Main idea of Householder is to apply successive simple orthogonal ma-
trices that transform A into upper triangular form. (Similar to Gaussian
elimination.)

• Key point is that product of square orthogonal matrices is also orthogo-
nal, e.g., if H�1

i = HT
i , i = 1, . . . ,m, then

(H2H1)
T (H2H1) = HT

1 H
T
2 H2H1

= HT
1

�
HT

2 H2

�
H1

= HT
1 H1

= I

• In the next slides, we start by looking at a single orthogonal matrix, Hi,
denoted as a Householder transformation, H.
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Householder Transformations
Householder transformation has form

H = I � 2

vvT

vTv

for nonzero vector v
H is orthogonal and symmetric: H = HT

= H�1

Given vector a, we want to choose v so that

Ha =

2

6664

↵

0

...
0

3

7775
= ↵

2

6664

1

0

...
0

3

7775
= ↵e

1

Substituting into formula for H, we can take

v = a� ↵e
1

and ↵ = ±kak
2

, with sign chosen to avoid cancellation
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Householder Reflection 

v 



Householder Derivation

Ha = a� 2

vTa

vTv

0

BBBBB@

v1

v2
.

.

.

vm

1

CCCCCA
=

0

BBBBB@

↵

0

.

.

.

0

1

CCCCCA

v = a� ↵e1  � Choose ↵ to avoid cancellation.

vTa = aTa� ↵a1, vTv = aTa� 2↵a1 + ↵2

Ha = a� 2

�
aTa� ↵a1

�

aTa� 2↵a1 + ↵2
(a� ↵e1)

= a� 2

||a||2 ± ||a||a1
2||a||2 ± 2||a||a1

(a� ↵e1)

= a� (a� ↵e1) = ↵e1.

Choose ↵ = �sign(a1)||a|| = �
✓

a1
|a1|

◆
||a||.
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Example: Householder Transformation
If a =

⇥
2 1 2

⇤
T , then we take

v = a� ↵e
1

=

2

4
2

1

2

3

5� ↵

2

4
1

0

0

3

5
=

2

4
2

1

2

3

5�

2

4
↵

0

0

3

5

where ↵ = ±kak
2

= ±3

Since a

1

is positive, we choose negative sign for ↵ to avoid

cancellation, so v =

2

4
2

1

2

3

5�

2

4
�3

0

0

3

5
=

2

4
5

1

2

3

5

To confirm that transformation works,

Ha = a� 2

vTa

vTv
v =

2

4
2

1

2

3

5� 2

15

30

2

4
5

1

2

3

5
=

2

4
�3

0

0

3

5

< interactive example >
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Householder QR Factorization

To compute QR factorization of A, use Householder
transformations to annihilate subdiagonal entries of each
successive column

Each Householder transformation is applied to entire
matrix, but does not affect prior columns, so zeros are
preserved

In applying Householder transformation H to arbitrary
vector u,

Hu =

✓
I � 2

vvT

vTv

◆
u = u�

✓
2

vTu

vTv

◆
v

which is much cheaper than general matrix-vector
multiplication and requires only vector v, not full matrix H
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Householder QR Factorization, continued

Process just described produces factorization

H
n

· · ·H
1

A =


R
O

�

where R is n⇥ n and upper triangular

If Q = H
1

· · ·H
n

, then A = Q


R
O

�

To preserve solution of linear least squares problem,
right-hand side b is transformed by same sequence of
Householder transformations

Then solve triangular least squares problem

R
O

�
x ⇠
=

QTb
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Householder QR Factorization, continued

For solving linear least squares problem, product Q of
Householder transformations need not be formed explicitly

R can be stored in upper triangle of array initially
containing A

Householder vectors v can be stored in (now zero) lower
triangular portion of A (almost)

Householder transformations most easily applied in this
form anyway
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Example: Householder QR Factorization

For polynomial data-fitting example given previously, with

A =

2

66664

1 �1.0 1.0

1 �0.5 0.25

1 0.0 0.0

1 0.5 0.25

1 1.0 1.0

3

77775
, b =

2

66664

1.0

0.5

0.0

0.5

2.0

3

77775

Householder vector v
1

for annihilating subdiagonal entries
of first column of A is

v
1

=

2

66664

1

1

1

1

1

3

77775
�

2

66664

�2.236

0

0

0

0

3

77775
=

2

66664

3.236

1

1

1

1

3

77775
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Example, continued

Applying resulting Householder transformation H
1

yields
transformed matrix and right-hand side

H
1

A =

2

66664

�2.236 0 �1.118

0 �0.191 �0.405

0 0.309 �0.655

0 0.809 �0.405

0 1.309 0.345

3

77775
, H

1

b =

2

66664

�1.789

�0.362

�0.862

�0.362

1.138

3

77775

Householder vector v
2

for annihilating subdiagonal entries
of second column of H

1

A is

v
2

=

2

66664

0

�0.191

0.309

0.809

1.309

3

77775
�

2

66664

0

1.581

0

0

0

3

77775
=

2

66664

0

�1.772

0.309

0.809

1.309

3

77775
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Example, continued

Applying resulting Householder transformation H
2

yields

H
2

H
1

A =

2

66664

�2.236 0 �1.118

0 1.581 0

0 0 �0.725

0 0 �0.589

0 0 0.047

3

77775
, H

2

H
1

b =

2

66664

�1.789

0.632

�1.035

�0.816

0.404

3

77775

Householder vector v
3

for annihilating subdiagonal entries
of third column of H

2

H
1

A is

v
3

=

2

66664

0

0

�0.725

�0.589

0.047

3

77775
�

2

66664

0

0

0.935

0

0

3

77775
=

2

66664

0

0

�1.660

�0.589

0.047

3

77775
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Example, continued

Applying resulting Householder transformation H
3

yields

H
3

H
2

H
1

A =

2

66664

�2.236 0 �1.118

0 1.581 0

0 0 0.935

0 0 0

0 0 0

3

77775
, H

3

H
2

H
1

b =

2

66664

�1.789

0.632

1.336

0.026

0.337

3

77775

Now solve upper triangular system Rx = c
1

by
back-substitution to obtain x =

⇥
0.086 0.400 1.429

⇤
T

< interactive example >
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kth Householder Transformation (Reflection) 



Successive Householder Transformations

2

66664

x x x

x x x
x x x

x x x
x x x

3

77775
H1

�!

2

66664

x x x
0 x x
0 x x
0 x x
0 x x

3

77775
H2

�!

2

66664

x x x

x x
0 x
0 x
0 x

3

77775
H3

�!

2

66664

x x x

x x
x
0
0

3

77775

A H1A H2H1A H3H2H1A



Householder Transformations

H1A =

0

BB@

x x x

x x

x x

x x

1

CCA , H1 b �! b(1) =

0

BB@

x

x

x

x

1

CCA

H2H1A =

0

BB@

x x x

x x

x
x

1

CCA , H2 b
(1) �! b(2) =

0

BB@

x

x

x
x

1

CCA

H3H2H1A =

0

BB@

x x x

x x
x

1

CCA , H3 b
(2) �! b(3) =

✓
c1
c2

◆
.

Questions: How does H3H2H1 relate to Q or Q1??

What is Q in this case?



Method 3:  Givens Rotations 
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Givens Rotations

Givens rotations introduce zeros one at a time
Given vector

⇥
a

1

a

2

⇤
T , choose scalars c and s so that


c s

�s c

� 
a

1

a

2

�
=


↵

0

�

with c

2

+ s

2

= 1, or equivalently, ↵ =

p
a

2

1

+ a

2

2

Previous equation can be rewritten

a

1

a

2

a

2

�a

1

� 
c

s

�
=


↵

0

�

Gaussian elimination yields triangular system

a

1

a

2

0 �a

1

� a

2

2

/a

1

� 
c

s

�
=


↵

�↵a

2

/a

1

�
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Givens Rotations, continued

Back-substitution then gives

s =

↵a

2

a

2

1

+ a

2

2

and c =

↵a

1

a

2

1

+ a

2

2

Finally, c2 + s

2

= 1, or ↵ =

p
a

2

1

+ a

2

2

, implies

c =

a

1p
a

2

1

+ a

2

2

and s =

a

2p
a

2

1

+ a

2

2
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2 x 2 Rotation Matrices 
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Example: Givens Rotation

Let a =

⇥
4 3

⇤
T

To annihilate second entry we compute cosine and sine

c =

a

1p
a

2

1

+ a

2

2

=

4

5

= 0.8 and s =

a

2p
a

2

1

+ a

2

2

=

3

5

= 0.6

Rotation is then given by

G =


c s

�s c

�
=


0.8 0.6

�0.6 0.8

�

To confirm that rotation works,

Ga =


0.8 0.6

�0.6 0.8

� 
4

3

�
=


5

0

�
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Givens QR Factorization

More generally, to annihilate selected component of vector
in n dimensions, rotate target component with another
component

2

66664

1 0 0 0 0

0 c 0 s 0

0 0 1 0 0

0 �s 0 c 0

0 0 0 0 1

3

77775

2

66664

a

1

a

2

a

3

a

4

a

5

3

77775
=

2

66664

a

1

↵

a

3

0

a

5

3

77775

By systematically annihilating successive entries, we can
reduce matrix to upper triangular form using sequence of
Givens rotations

Each rotation is orthogonal, so their product is orthogonal,
producing QR factorization
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Givens Rotations

Gk =

2

664

I

G

I

3

775

• If G is a 2 ⇥ 2 block, Gk Selectively acts on two adjacent rows.

• The full rows.
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Givens QR Factorization

Straightforward implementation of Givens method requires
about 50% more work than Householder method, and also
requires more storage, since each rotation requires two
numbers, c and s, to define it

These disadvantages can be overcome, but requires more
complicated implementation

Givens can be advantageous for computing QR
factorization when many entries of matrix are already zero,
since those annihilations can then be skipped

< interactive example >
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Givens QR 

❑  A particularly attractive use of Givens QR is when A is upper 
Hessenberg – A is upper triangular with one additional nonzero 
diagonal below the main one:    Aij  = 0  if  i > j+1 

❑  In this case, we require Givens  row operations applied only n 
times, instead of O(n2) times. 

❑  Work for Givens is thus O(n2) instead of O(n3).  

❑  Upper Hessenberg matrices arise when computing eigenvalues. 

Extra Credit Question: What is cost of Householder in this case? 



Successive Givens Rotations

As with Householder transformations, we apply successive Givens rotations,
G1, G2, etc.

G1A =

0

BB@

x x x
x x x

x x x

x x

1

CCA , H1 b �! b(1) =

0

BB@

x
x

x

x

1

CCA

G2G1A =

0

BB@

x x x

x x x

x x

x x

1

CCA , G2 b
(1) �! b(2) =

0

BB@

x

x

x

x

1

CCA

G3G2G1A =

0

BB@

x x x

x x

x x
x x

1

CCA , G3 b
(2) �! b(3) =

0

BB@

x

x

x
x

1

CCA

• How many Givens rotations (total) are required for the m ⇥ n

case?

• How does . . . G3G2G1 relate to Q or Q1?

• What is Q in this case?
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Rank Deficiency

If rank(A) < n, then QR factorization still exists, but yields
singular upper triangular factor R, and multiple vectors x
give minimum residual norm

Common practice selects minimum residual solution x
having smallest norm

Can be computed by QR factorization with column pivoting
or by singular value decomposition (SVD)

Rank of matrix is often not clear cut in practice, so relative
tolerance is used to determine rank
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Example: Near Rank Deficiency

Consider 3⇥ 2 matrix

A =

2

4
0.641 0.242

0.321 0.121

0.962 0.363

3

5

Computing QR factorization,

R =


1.1997 0.4527

0 0.0002

�

R is extremely close to singular (exactly singular to 3-digit
accuracy of problem statement)
If R is used to solve linear least squares problem, result is
highly sensitive to perturbations in right-hand side
For practical purposes, rank(A) = 1 rather than 2, because
columns are nearly linearly dependent

Michael T. Heath Scientific Computing 49 / 61



Least Squares Data Fitting
Existence, Uniqueness, and Conditioning

Solving Linear Least Squares Problems

Normal Equations
Orthogonal Methods
SVD

QR with Column Pivoting

Instead of processing columns in natural order, select for
reduction at each stage column of remaining unreduced
submatrix having maximum Euclidean norm

If rank(A) = k < n, then after k steps, norms of remaining
unreduced columns will be zero (or “negligible” in
finite-precision arithmetic) below row k

Yields orthogonal factorization of form

QTAP =


R S
O O

�

where R is k ⇥ k, upper triangular, and nonsingular, and
permutation matrix P performs column interchanges
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QR with Column Pivoting, continued

Basic solution to least squares problem Ax ⇠
=

b can now
be computed by solving triangular system Rz = c

1

, where
c
1

contains first k components of QTb, and then taking

x = P


z
0

�

Minimum-norm solution can be computed, if desired, at
expense of additional processing to annihilate S

rank(A) is usually unknown, so rank is determined by
monitoring norms of remaining unreduced columns and
terminating factorization when maximum value falls below
chosen tolerance

< interactive example >
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Classical GS:

q̃
k
= ak

forj = 1, . . . , k � 1,

rjk = qT
j
ak

q̃
k
= q̃

k
� q

j
rjk

end

q
k
= q̃

k
/||q̃

k
||

Modified GS:

q̃
k
= ak

forj = 1, . . . , k � 1,

rjk = qT
j
q̃
k

 �
q̃
k
= q̃

k
� q

j
rjk

end

q
k
= q̃

k
/||q̃

k
||

• Modifed GS computes the projection onto q
j
using the remainder,

ak �Qj�1ak, rather than simply projecting ak onto q
j
.

• At each step, you are working with a smaller correction.

• Essentially the same e↵ect is realized by running classical GS twice, first
on A, then on Q. On the second pass, the corrections are very small and
hence less sensitive to round-o↵.

• Classical GS is attractive for parallel computing. Why?

1
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Comparison of Methods

Forming normal equations matrix ATA requires about
n

2

m/2 multiplications, and solving resulting symmetric
linear system requires about n3

/6 multiplications

Solving least squares problem using Householder QR
factorization requires about mn

2 � n

3

/3 multiplications

If m ⇡ n, both methods require about same amount of
work

If m � n, Householder QR requires about twice as much
work as normal equations

Cost of SVD is proportional to mn

2

+ n

3, with
proportionality constant ranging from 4 to 10, depending on
algorithm used
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Comparison of Methods, continued

Normal equations method produces solution whose
relative error is proportional to [cond(A)]

2

Required Cholesky factorization can be expected to break
down if cond(A) ⇡ 1/

p
✏mach or worse

Householder method produces solution whose relative
error is proportional to

cond(A) + krk
2

[cond(A)]

2

which is best possible, since this is inherent sensitivity of
solution to least squares problem

Householder method can be expected to break down (in
back-substitution phase) only if cond(A) ⇡ 1/✏mach or worse
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Comparison of Methods, continued

Householder is more accurate and more broadly
applicable than normal equations

These advantages may not be worth additional cost,
however, when problem is sufficiently well conditioned that
normal equations provide sufficient accuracy

For rank-deficient or nearly rank-deficient problems,
Householder with column pivoting can produce useful
solution when normal equations method fails outright

SVD is even more robust and reliable than Householder,
but substantially more expensive
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Singular Value Decomposition

Singular value decomposition (SVD) of m⇥ n matrix A has
form

A = U⌃V T

where U is m⇥m orthogonal matrix, V is n⇥ n

orthogonal matrix, and ⌃ is m⇥ n diagonal matrix, with

�

ij

=

⇢
0 for i 6= j

�

i

� 0 for i = j

Diagonal entries �

i

, called singular values of A, are
usually ordered so that �

1

� �

2

� · · · � �

n

Columns u
i

of U and v
i

of V are called left and right
singular vectors
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SVD of Rectangular Matrix A 

• A = U⌃V T
is m⇥ n.

• U is m⇥m, orthogonal.

• ⌃ is m⇥ n, diagonal, �i > 0.

• V is n⇥ n, orthogonal.

1

A                         U             §           V T 
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Example: SVD

SVD of A =

2

664

1 2 3

4 5 6

7 8 9

10 11 12

3

775 is given by U⌃V T

=

2

664

.141 .825 �.420 �.351

.344 .426 .298 .782

.547 .0278 .664 �.509

.750 �.371 �.542 .0790

3

775

2

664

25.5 0 0

0 1.29 0

0 0 0

0 0 0

3

775

2

4
.504 .574 .644

�.761 �.057 .646

.408 �.816 .408

3

5

< interactive example >
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In square matrix case, U § VT closely related to eigenpair, X ¤ X-1  
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Applications of SVD

Minimum norm solution to Ax ⇠
=

b is given by

x =

X

�i 6=0

uT

i

b

�

i

v
i

For ill-conditioned or rank deficient problems, “small”
singular values can be omitted from summation to stabilize
solution

Euclidean matrix norm : kAk
2

= �

max

Euclidean condition number of matrix : cond(A) =

�

max

�

min

Rank of matrix : number of nonzero singular values
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SVD for Linear Least Squares Problem: A = U⌃V T

Ax ⇡ b

U⌃V T ⇡ b

UTU⌃V T ⇡ UT b

⌃V T ⇡ UT b


R̃

O

�
x =

✓
c1
c2

◆

x =
nX

j=1

vj
1

�j
(c1)j =

nX

j=1

vj
1

�j
uTj b

1

A = U⌃V T

Ax ⇡ b

U⌃V T ⇡ b

UTU⌃V T ⇡ UT b

⌃V T ⇡ UT b


R̃

O

�
x =

✓
c1
c2

◆

x =
nX

j=1

vj
1

�j
(c1)j =

nX

j=1

vj
1

�j
uTj b

1

uuuu

A = U⌃V T

Ax ⇡ b

U⌃V T ⇡ b

UTU⌃V T ⇡ UT b

⌃V T ⇡ UT b


R̃
O

�
x ⇡

✓
c1
c2

◆

R̃x = c1

x =
nX

j=1

vj
1

�j
(c1)j =

nX

j=1

vj
1

�j
uTj b

1



SVD for Linear Least Squares Problem: A = U⌃V T

Ax ⇡ b

U⌃V T ⇡ b

UTU⌃V T ⇡ UT b

⌃V T ⇡ UT b


R̃

O

�
x =

✓
c1
c2

◆

x =
nX

j=1

vj
1

�j
(c1)j =

nX

j=1

vj
1

�j
uTj b

1

• SVD can also handle the rank deficient case.

• If there are only k singular values �j > ✏ then

take only the first k contributions.

x =

kX

j=1

vj
1

�j
u

T
j b

1
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Pseudoinverse

Define pseudoinverse of scalar � to be 1/� if � 6= 0, zero
otherwise
Define pseudoinverse of (possibly rectangular) diagonal
matrix by transposing and taking scalar pseudoinverse of
each entry
Then pseudoinverse of general real m⇥ n matrix A is
given by

A+

= V ⌃+UT

Pseudoinverse always exists whether or not matrix is
square or has full rank
If A is square and nonsingular, then A+

= A�1

In all cases, minimum-norm solution to Ax ⇠
=

b is given by
x = A+ b
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Orthogonal Bases

SVD of matrix, A = U⌃V T , provides orthogonal bases for
subspaces relevant to A

Columns of U corresponding to nonzero singular values
form orthonormal basis for span(A)

Remaining columns of U form orthonormal basis for
orthogonal complement span(A)

?

Columns of V corresponding to zero singular values form
orthonormal basis for null space of A

Remaining columns of V form orthonormal basis for
orthogonal complement of null space of A
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Lower-Rank Matrix Approximation
Another way to write SVD is

A = U⌃V T

= �

1

E
1

+ �

2

E
2

+ · · ·+ �

n

E
n

with E
i

= u
i

vT

i

E
i

has rank 1 and can be stored using only m+ n storage
locations
Product E

i

x can be computed using only m+ n

multiplications
Condensed approximation to A is obtained by omitting
from summation terms corresponding to small singular
values
Approximation using k largest singular values is closest
matrix of rank k to A
Approximation is useful in image processing, data
compression, information retrieval, cryptography, etc.

< interactive example >
Michael T. Heath Scientific Computing 57 / 61



Low Rank Approximation to A = U⌃V T

Ax ⇡ b

U⌃V T ⇡ b

UTU⌃V T ⇡ UT b

⌃V T ⇡ UT b


R̃

O

�
x =

✓
c1
c2

◆

x =
nX

j=1

vj
1

�j
(c1)j =

nX

j=1

vj
1

�j
uTj b

1

• Because of the diagonal form of ⌃, we have

A = U⌃V T
=

nX

j=1

uj�jv
T
j

• A rank k approximation to A is given by

A ⇡ Ak :=

kX

j=1

uj�jv
T
j

• Ak is the best approximation to A in the Frobenius norm,

||M ||F :=

q
m2

11 +m2
21 + · · ·+m2

mn

1



SVD for Image Compression 

❑  If we view an image as an m x n matrix, we can use the SVD to 
generate a low-rank compressed version. 

❑  Full image storage cost scales as  O(mn) 

❑  Compress image storage scales as O(km) + O(kn), with k < m or n. 

• Because of the diagonal form of ⌃, we have

A = U⌃V T
=

nX

j=1

uj�jv
T
j
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uj�jv
T
j
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mn

1
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Image Compression 

❑  If we view an image as an m x n matrix, we can use the SVD to 
generate a low-rank compressed version. 

❑  Full image storage cost scales as  O(mn) 

❑  Compress image storage scales as O(km) + O(kn), with k < m or n. 

k=1                           k=2                      k=3    (m=536,n=432) 

Note: we don’t store matrix – just vectors u1 and v1. 



Matlab code 



Image Compression 

Compressed image storage scales as O(km) + O(kn), with k < m or n. 
k=1                           k=2                      k=3 

k=10                               k=20                           k=50         (m=536, n=462) 



Low-Rank Approximations to Solutions of Ax = b 

❑  Other functions, aside from the inverse of the matrix, can 
also be approximated in this way, at relatively low cost, 
once the SVD is known.  

If �1  �2  · · ·  �n,

x ⇡
Pk

j=1 �
+
j vju

T
j b

1



Eigenvalues, Projection, and Linear Systems: II

• Here, we tie Chapter 2 (linear systems) and 3 (projection) material in
with the forthcoming chapter on eigenvalues.

• We start by reconsidering Jacobi iteration for the solution of Ax = b:

xk+1

= xk + D�1(b � Axk).

• For simplicity, assume Aii = 1 and that A is SPD:

xk+1

= xk + (b � Axk)

= xk + A(x � xk)

= xk + Aek.

• Subtract preceding expression from x = x:

ek+1

= ek � Aek

ek = (I � A)ke
0

. Error equation.

• Note that with x

0

= 0, we have e

0

= x ,x
1

= b, and

ek = (I � A)k x.
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• We show that xk is a polynomial of degree k � 1 in A times b:

xk = x � ek

= x � (I � A)kx

= x � (I � kA + · · · + Ak)x

=
�
c
0

A + c
1

A2 + · · · + ck�1

Ak
�
x

=
�
c
0

I + c
1

A + · · · + ck�1

Ak�1

�
Ax

=
�
c
0

I + c
1

A + · · · + ck�1

Ak�1

�
b

= Pk�1

(A)b

2 span(b, Ab, . . . , Ak�1

b) =: Kk(A;b),

where Kk(A;b) is the Krylov subspace associated with matrix A and
vector b.



• Look at the error behavior: ek = (I � A)kx.

• Assume A has an orthonormal set of eigenvectors spanning lRn.

– True if, say, A is symmetric.

– Here, we’ll further assume A is SPD such that �i > 0.

• Consider eigenvectors and eigenvalues (si,�i)

Asi = �isi

⇢
Orthogonal: s

T
i sj = 0, i 6= j

Normalized: s

T
i si = 1.

• We have the matrix of eigenvectors S = (s
1

s

2

. . . sn) with S�1 = ST .

• Therefore S�1 exists.



Use of Eigenvector Decomposition

• For any x 2 lRn, can find a decomposition of x:

x =
nX

j=1

cjsj.

• Easy:

s

T
i x =

nX

j=1

cjs
T
i sj = ci.

• In matrix form:

x = Sc. c = S�1

x = ST
x.

(Requires STS = I, which you, as a user, need to verify.)



• Returning to our error equation:

ek = (I � A)k x

=
nX

j=1

cj(I � A)k sj

=
nX

j=1

cj(1 � �j)
k
sj

=
nX

j=1

gj cj sj,

where

gj := (1� �j)
k = gk(�j) 2 lP1

k(�j).

• Here, we define lP1

k(�) to be the space of polynomials of degree k in �

that take on the value 1 when �=0.



• Example: 1D Poisson matrix:

D�1Au
��
i
=

h2

2


1

h2

(�ui�1

+ 2ui � ui+1

)

�
, h :=

1

n+ 1
.

• Eigenvalues:

�j =
h2

2
·

2

h2

(1 � cos(⇡jh))

�
2

✓
⇡2h2

2
, 2� ⇡h2

2

◆
.

• Rate of contraction is

⇢ = max
j

|g(�j)| .

• More generally, for well-chosen scaling matrix,

⇢ =
 � 1

 + 1
,

where  is the condition number of the SPD matrix A:

 =
�
max

�
min

.
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⇢ = max
j

|g(�j)| .

• More generally, for well-chosen scaling matrix,

⇢ =
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where  is the condition number of the SPD matrix A:

 =
�
max

�
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Projection: Conjugate Gradient Iteration

• So far, we’ve established that Jacobi iteration gives a solution xk 2
lPk�1

(A)b = Kk(A;b) with a rate of convergence (for this example)
that scales like

⇢ =
 � 1

 + 1
,

implying that the number of iterations is O().

• Conjugate gradients (CG) generates a solution xk that is the projection

of x (in the A-norm) onto the same approximation space, Kk(A;b).

• It’s not too di�cult to show that

||ek||A
||x||A

 2

✓p
 � 1p
 + 1

◆k

,

which is decidedly faster than Jacobi iteration.

• CG is introduced in Chapter 6 for nonlinear optimization and in Chapter
11 for solving sparse linear systems.



• CG Algorithm:

pk = rk�1

�
k�1X

j=1

�jpj, (such that pk ?A pj, j < k)

= rk�1

+ �kpk�1

,

wk = Apk

xk = xk�1

+ ↵pk, ↵ = r

T
k�1

rk�1

/pT
kwk

rk = rk�1

� ↵wk.

• Error is bounded by maximum of any polynomial in lP1

k(�), � 2 [�
1

,�n]




