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Eigenvalue Problems

Eigenvalue problems occur in many areas of science and
engineering, such as structural analysis

Eigenvalues are also important in analyzing numerical
methods

Theory and algorithms apply to complex matrices as well
as real matrices

With complex matrices, we use conjugate transpose, AH ,
instead of usual transpose, AT
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Eigenvalues and Eigenvectors

Standard eigenvalue problem : Given n⇥ n matrix A, find
scalar � and nonzero vector x such that

Ax = �x

� is eigenvalue, and x is corresponding eigenvector

� may be complex even if A is real

Spectrum = �(A) = set of eigenvalues of A

Spectral radius = ⇢(A) = max{|�| : � 2 �(A)}
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Classic Eigenvalue Problem

• Consider the coupled pair of di↵erential equations:

dv

dt
= 4v � 5w, v = 8 at t = 0,

dw

dt
= 2v � 3w, w = 5 at t = 0.

• This is an initial-value problem.

• With the coe�cient matrix,

A =


4 �5
2 �3

�
,

we can write this as,

d

dt

✓
v(t)
w(t)

◆
=


4 �5
2 �3

�✓
v(t)
w(t)

◆
.

• Introducing the vector unknown, u(t) := [v(t) w(t)]T with u(0) = [8 5]T ,
we can write the system in vector form,

du

dt
= Au, with u = u(0) at t = 0.

• How do we find u(t) ?



• If we had a 1 ⇥ 1 matrix A = a, we would have a scalar equation:

du

dt
= a u with u = u(0) at t = 0.

The solution to this equation is a pure exponential:

u(t) = eat u(0),

which satisfies the initial contion because e0 = 1.

• The derivative with respect to t is aeatu(0) = au, so it satisfies the scalar
initial value problem.

• The constant a is critical to how this system behaves.

– If a > 0 then the solution grows in time.

– If a < 0 then the solution decays.

– If a 2 Im then the solution is oscillatory.
(More on this later...)



• Coming back to our system, suppose we again look for solutions that are
pure exponentials in time, e.g.,

v(t) = e�ty

w(t) = e�tz.

• If this is to be a solution to our initial value problem, we require

dv

dt
= �e�ty = 4e�ty � 5e�tz

dw

dt
= �e�tz = 2e�ty � 3e�tz.

• The e�t cancels out from each side, leaving:

�y = 4y � 5z

�z = 2y � 3z,

which is the eigenvalue problem.

Classic Eigenvalue Problem


4 �5
2 �3

�✓
y
z

◆
=


� 0
0 �

�✓
y
z

◆
.



• In vector form,
u(t) = e�tx, yields

du

dt
= Au () �e�tx = A(e�tx)

which gives the eigenvalue problem in matrix form:

�x = Ax or

Ax = �x.

• As in the scalar case, the solution behavior depends on whether � has

– positive real part �! a growing solution,

– negative real part �! a decaying solution,

– an imaginary part �! an oscillating solution.

• Note that here we have two unknowns: � and x.

• We refer to (�,x) as an eigenpair, with eigenvalue � and eigenvector x.



Solving the Eigenvalue Problem

• The eigenpair satisfies

(Ax � �I)x = 0,

which is to say,

– x is in the null-space of A� �I

– � is chosen so that A� �I has a null-space.

• We thus seek � such that A� �I is singular.

• Singularity implies det(A� �I)=0.

• For our example:

0 =

����
4� � �5
2 �3� �

���� = (4� �)(�3� �) � (�5)(2),

or

�2 � �� 2 = 0,

which has roots � = �1 or � = 2.



Finding the Eigenvectors

• For the case � = �1 = �1, (A� �1I)x1 satisfies,

5 �5
2 �2

�✓
y
z

◆
=

✓
0
0

◆
,

which gives us the eigenvector x1

x1 =

✓
y
z

◆
=

✓
1
1

◆
.

• Note that any nonzero multiple of x1 is also an eigenvector.

• Thus, x1 defines a subspace that is invariant under multiplication by A.

• For the case � = �2 = 2, (A� �2I)x2 satisfies,

2 �5
2 �5

�✓
y
z

◆
=

✓
0
0

◆
,

which gives us the second eigenvector as any multiple of

x2 =

✓
y
z

◆
=

✓
5
2

◆
.



Return to Model Problem

• Note that our model problem du
dt = Au, is linear in the unknown u.

• Thus, if we have two solutions u1(t) and u2(t) satisfying the di↵erential
equation, their sum u := u1 + u2 also satisfies the equation:

du1

dt
= Au1

+
du2

dt
= Au2

d

dt
(u1 + u2) = A(u1 + u2)

du

dt
= Au



• Take u1 = c1e�1t
x1:

du1

dt
= c1�1e

�1t
x1

Au1 = A
�
c1e

�1t
x1

�

= c1e
�1tAx1

= c1e
�1t�1x1

=
du1

dt
.

• Similarly, for u2 = c2e�2t
x2:

du2

dt
= Au2.

• Thus, du

dt
=

d

dt
(u1 + u2) = A (u1 + u2)

u = c1e
�1t

x1 + c2e
�2t

x2.

• The only remaining part is to find the coe�cients c1 and c2 such that
u = u(0) at time t = 0.

• This initial condition yields a 2 ⇥ 2 system,
2

4
x1 x2

3

5
✓

c1
c2

◆
=

✓
8
5

◆
.



• Solving for c1 and c2 via Gaussian elimination:

1 5
1 2

� ✓
c1
c2

◆
=

✓
8
5

◆


1 5
0 �3

� ✓
c1
c2

◆
=

✓
8
�3

◆

c2 = 1

c1 = 8 � 5c1 = 3.

• So, our solution is
u(t) = x1c1e

�1t + x2c2e
�2t

=

✓
1
1

◆
3e�t +

✓
5
2

◆
e2t.

• Clearly, after a long time, the solution is going to look like a multiple
of x2 = [5 2]T because the component of the solution parallel to x1 will
decay.

• (More precisely, the component parallel to x1 will not grow as fast as the
component parallel to x2.)



Summary

• Model problem, u 2 Rn
,

du

dt
= Au, u = u(0) at time t = 0.

• Assuming A has n linearly independent eigenvectors, can express

u(t) =

nX

j=1

xjcje
�jt.

• Coe�cients cj determined by initial condition:

Xc =

nX

j=1

xjcj = u(0).

• Eigenpairs (�j,xj) satisfy

Axj = �jxj.



Growing / Decaying Modes

• Our model problem,

du

dt
= Au �! u(t) = x1c1e

�1t + x2c2e
�2t

leads to growth/decay of components.

• Also get growth/decay through matrix-vector products.

• Consider u = c1x1 + c2x2.

Au = c1Ax1 + c2Ax2

= c1�1x1 + c2�2x2

Ak
u = c1�

k
1x1 + c2�

k
2x2

= �k
2

"
c1

✓
�1

�2

◆k

x1 + c2x2

#
.

lim
k�!1

Ak
u = �k

2 [c1 · 0 · x1 + c2x2] = c2�
k
2x2.

• So, repeated matrix-vector products lead to emergence of eigenvector
associated with the eigenvalue � that has largest modulus.

• This is the main idea behind the power method, which is a common
way to find the eigenvector associated with max |�|.



Eigenvalue Problems
Existence, Uniqueness, and Conditioning
Computing Eigenvalues and Eigenvectors

Eigenvalue Problems
Eigenvalues and Eigenvectors
Geometric Interpretation

Geometric Interpretation

Matrix expands or shrinks any vector lying in direction of
eigenvector by scalar factor

Expansion or contraction factor is given by corresponding
eigenvalue �

Eigenvalues and eigenvectors decompose complicated
behavior of general linear transformation into simpler
actions
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Examples: Eigenvalues and Eigenvectors

A =


1 0

0 2

�
: �1 = 1, x1 =


1

0

�
, �2 = 2, x2 =


0

1

�

A =


1 1

0 2

�
: �1 = 1, x1 =


1

0

�
, �2 = 2, x2 =


1

1

�

A =


3 �1

�1 3

�
: �1 = 2, x1 =


1

1

�
, �2 = 4, x2 =


1

�1

�

A =


1.5 0.5
0.5 1.5

�
: �1 = 2, x1 =


1

1

�
, �2 = 1, x2 =

�1

1

�

A =


0 1

�1 0

�
: �1 = i, x1 =


1

i

�
, �2 = �i, x2 =


i
1

�

where i =
p�1
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Characteristic Polynomial

Equation Ax = �x is equivalent to

(A� �I)x = 0

which has nonzero solution x if, and only if, its matrix is
singular
Eigenvalues of A are roots �i of characteristic polynomial

det(A� �I) = 0

in � of degree n
Fundamental Theorem of Algebra implies that n⇥ n matrix
A always has n eigenvalues, but they may not be real nor
distinct
Complex eigenvalues of real matrix occur in complex
conjugate pairs: if ↵+ i� is eigenvalue of real matrix, then
so is ↵� i�, where i =

p�1

Michael T. Heath Scientific Computing 7 / 87
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Example: Characteristic Polynomial

Characteristic polynomial of previous example matrix is

det

✓
3 �1

�1 3

�
� �


1 0

0 1

�◆
=

det

✓
3� � �1

�1 3� �

�◆
=

(3� �)(3� �)� (�1)(�1) = �2 � 6�+ 8 = 0

so eigenvalues are given by

� =

6±p
36� 32

2

, or �1 = 2, �2 = 4

Michael T. Heath Scientific Computing 8 / 87

You should be able to find the 
eigenvalues of a 2x2 matrix. 
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Companion Matrix

Monic polynomial

p(�) = c0 + c1�+ · · ·+ cn�1�
n�1

+ �n

is characteristic polynomial of companion matrix

Cn =

2

666664

0 0 · · · 0 �c0
1 0 · · · 0 �c1
0 1 · · · 0 �c2
...

... . . . ...
...

0 0 · · · 1 �cn�1

3

777775

Roots of polynomial of degree > 4 cannot always
computed in finite number of steps
So in general, computation of eigenvalues of matrices of
order > 4 requires (theoretically infinite) iterative process
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Companion Matrix, n=3 

❑  Look at determinant of  (C – I ¸):        | C- I ¸ | = 0 

C :=

0

@
0 0 �c0
1 0 �c1
0 1 �c2

1

A

Eigenvalues: |C � I�| =

������

�� 0 �c0
1 �� �c1
0 1 (�c2 � �)

������

= � c0

����
1 ��
0 1

���� + c1

����
��
0 1

���� � (c2 + �)

����
�� 0
1 ��

����

= � c0 � c1� � c2�
2 � �3 = 0

=) p(�) = c0 + c1� + c2�
2 + �3 = 0

1
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Characteristic Polynomial, continued

Computing eigenvalues using characteristic polynomial is
not recommended because of

work in computing coefficients of characteristic polynomial
sensitivity of coefficients of characteristic polynomial
work in solving for roots of characteristic polynomial

Characteristic polynomial is powerful theoretical tool but
usually not useful computationally

Michael T. Heath Scientific Computing 10 / 87

Often, eigenvalue solvers are used to find roots of polynomials!  
(Particularly for orthogonal polynomials.) 
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Example: Characteristic Polynomial

Consider
A =


1 ✏
✏ 1

�

where ✏ is positive number slightly smaller than p
✏mach

Exact eigenvalues of A are 1 + ✏ and 1� ✏

Computing characteristic polynomial in floating-point
arithmetic, we obtain

det(A� �I) = �2 � 2�+ (1� ✏2) = �2 � 2�+ 1

which has 1 as double root

Thus, eigenvalues cannot be resolved by this method even
though they are distinct in working precision
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Multiplicity and Diagonalizability

Multiplicity is number of times root appears when
polynomial is written as product of linear factors

Eigenvalue of multiplicity 1 is simple

Defective matrix has eigenvalue of multiplicity k > 1 with
fewer than k linearly independent corresponding
eigenvectors

Nondefective matrix A has n linearly independent
eigenvectors, so it is diagonalizable

X�1AX = D

where X is nonsingular matrix of eigenvectors

Michael T. Heath Scientific Computing 12 / 87Note:  Every matrix is ² away from being diagonalizable. 

Algebraic 
Multiplicity 
 
 
 
 
Geometric  
Multiplicity 



Diagonalization 
• The real merit of eigenvalue decomposition is that it simplifies powers of a matrix.

• Consider
X

�1
AX = D, diagonal

AX = XD

A = XDX

�1

A

2 =
�
XDX

�1
� �

XDX

�1
�

= XD

2
X

�1

A

k =
�
XDX

�1
� �

XDX

�1
�
· · ·

�
XDX

�1
�

= XD

k
X

�1

= X

2

664

�

k
1

�

k
2

. . .

�

k
n

3

775X

�1

• High powers of A tend to be dominated by largest eigenpair (�1, x1),
assuming |�1| � |�2| � · · · � |�n|.

1



Matrix Powers Example

• Consider our 1D finite di↵erence example introduced earlier.

d

2
u

dx

2
= f(x) �! � ui�1 � 2ui + ui+1

�x

2
⇡ f(xi).

where u(0) = u(1) = 0 and �x = 1/(n+ 1).

• In matrix form,

Au =
1

�x

2

0

BBBBBBBB@

2 �1

�1 2 �1

�1 . . . . . .

. . . . . . �1

�1 2

1

CCCCCCCCA

0

BBBBBBBB@

u1

u2

...

...

um

1

CCCCCCCCA

=

0

BBBBBBBB@

f1

f2

...

...

fm

1

CCCCCCCCA

• Eigenvectors and eigenvalues have closed-form expression:

(zk)i = sin k⇡xi = sin k⇡i�x �k =
2

�x

2
(1� cos k⇡�x)

• Eigenvalues are in the interval ⇠ [⇡2
, 4(n+ 1)2].



Matlab Example: heat_demo.m 

❑  Repeatedly applying A to a random input vector reveals the 
eigenvalue of maximum modulus. 

❑  This idea leads to one of the most common (but not most efficient) 
ways of finding an eigenvalue/vector pair, called the power method. 



Diagonalization 
• Note that if we define A

0 = I, we have any polynomial of A defined as

pk(A)x = X

2

6666664

pk(�1)

pk(�2)

. . .

pk(�n)

3

7777775
X

�1
x.

• We can further extend this to other functions,

f(A)x = X

2

6666664

f(�1)

f(�2)

. . .

f(�n)

3

7777775
X

�1
x.

• For example, the solution to f(A)x = b is would be

x = X [f(D)]�1
X

�1
b.

• The diagonalization concept is very powerful because it transforms systems

of equations into scalar equations.

2
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Eigenspaces and Invariant Subspaces

Eigenvectors can be scaled arbitrarily: if Ax = �x, then
A(�x) = �(�x) for any scalar �, so �x is also eigenvector
corresponding to �

Eigenvectors are usually normalized by requiring some
norm of eigenvector to be 1

Eigenspace = S� = {x : Ax = �x}
Subspace S of Rn (or Cn) is invariant if AS ✓ S
For eigenvectors x1 · · · xp, span([x1 · · · xp]) is invariant
subspace

Michael T. Heath Scientific Computing 13 / 87
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Relevant Properties of Matrices

Properties of matrix A relevant to eigenvalue problems

Property Definition
diagonal aij = 0 for i 6= j
tridiagonal aij = 0 for |i� j| > 1

triangular aij = 0 for i > j (upper)
aij = 0 for i < j (lower)

Hessenberg aij = 0 for i > j + 1 (upper)
aij = 0 for i < j � 1 (lower)

orthogonal ATA = AAT
= I

unitary AHA = AAH
= I

symmetric A = AT

Hermitian A = AH

normal AHA = AAH

Michael T. Heath Scientific Computing 14 / 87

Skew symmetric: A = �AT

2



Upper Hessenberg (from last lecture…) 

❑  A is upper Hessenberg – A is upper triangular with one additional 
nonzero diagonal below the main one:    Aij  = 0  if  i > j+1 

❑  Requires only n Givens rotations, instead of O(n2), to effect QR 
factorization. 
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Examples: Matrix Properties

Transpose:

1 2

3 4

�T
=


1 3

2 4

�

Conjugate transpose:

1 + i 1 + 2i
2� i 2� 2i

�H
=


1� i 2 + i
1� 2i 2 + 2i

�

Symmetric:

1 2

2 3

�

Nonsymmetric:

1 3

2 4

�

Hermitian:


1 1 + i
1� i 2

�

NonHermitian:


1 1 + i
1 + i 2

�

Michael T. Heath Scientific Computing 15 / 87

Skew-Symmetric:


0 �2
2 0

�
= �


0 �2
2 0

�T

1
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Examples, continued

Orthogonal:

0 1

1 0

�
,

�1 0

0 �1

�
,

 p
2/2

p
2/2

�p
2/2

p
2/2

�

Unitary:

i
p
2/2

p
2/2

�p
2/2 �i

p
2/2

�

Nonorthogonal:

1 1

1 2

�

Normal:

2

4
1 2 0

0 1 2

2 0 1

3

5

Nonnormal:

1 1

0 1

�

Michael T. Heath Scientific Computing 16 / 87

ß “canonical non-normal matrix” 
     Defective – has only one eigenvector. 



Normal Matrices 

Normal matrices have orthogonal eigenvectors, so x

H
i xj = �ij

X

T
= X

�1

A = XDX

H

Normal matrices include

• symmetric (A = A

T
)

• skew-symmetric (A = �A

T
)

• unitary (U

H
U = I)

• circulant (periodic+Toeplitz)

• others . . .

1



Normal Matrices 

Normal matrices have orthogonal eigenvectors, so x

H
i xj = �ij

X

T
= X

�1

A = XDX

H

Normal matrices include

• symmetric (A = A

T
)

• skew-symmetric (A = �A

T
)

• unitary (U

H
U = I)

• circulant (periodic+Toeplitz)

• others . . .

1
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Properties of Eigenvalue Problems

Properties of eigenvalue problem affecting choice of algorithm
and software

Are all eigenvalues needed, or only a few?

Are only eigenvalues needed, or are corresponding
eigenvectors also needed?

Is matrix real or complex?

Is matrix relatively small and dense, or large and sparse?

Does matrix have any special properties, such as
symmetry, or is it general matrix?

Michael T. Heath Scientific Computing 17 / 87

Sparsity 



Eigenvalue Problems
Existence, Uniqueness, and Conditioning
Computing Eigenvalues and Eigenvectors

Characteristic Polynomial
Relevant Properties of Matrices
Conditioning

Conditioning of Eigenvalue Problems

Condition of eigenvalue problem is sensitivity of
eigenvalues and eigenvectors to changes in matrix

Conditioning of eigenvalue problem is not same as
conditioning of solution to linear system for same matrix

Different eigenvalues and eigenvectors are not necessarily
equally sensitive to perturbations in matrix

Michael T. Heath Scientific Computing 18 / 87
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Conditioning of Eigenvalues

If µ is eigenvalue of perturbation A+E of nondefective
matrix A, then

|µ� �k|  cond2(X) kEk2
where �k is closest eigenvalue of A to µ and X is
nonsingular matrix of eigenvectors of A
Absolute condition number of eigenvalues is condition
number of matrix of eigenvectors with respect to solving
linear equations
Eigenvalues may be sensitive if eigenvectors are nearly
linearly dependent (i.e., matrix is nearly defective)
For normal matrix (AHA = AAH ), eigenvectors are
orthogonal, so eigenvalues are well-conditioned

Michael T. Heath Scientific Computing 19 / 87
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Conditioning of Eigenvalues

If (A+E)(x+�x) = (�+��)(x+�x), where � is
simple eigenvalue of A, then

|��| / kyk2 · kxk2
|yHx| kEk2 = 1

cos(✓)
kEk2

where x and y are corresponding right and left
eigenvectors and ✓ is angle between them
For symmetric or Hermitian matrix, right and left
eigenvectors are same, so cos(✓) = 1 and eigenvalues are
inherently well-conditioned
Eigenvalues of nonnormal matrices may be sensitive
For multiple or closely clustered eigenvalues,
corresponding eigenvectors may be sensitive
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Problem Transformations

Shift : If Ax = �x and � is any scalar, then
(A� �I)x = (�� �)x, so eigenvalues of shifted matrix are
shifted eigenvalues of original matrix

Inversion : If A is nonsingular and Ax = �x with x 6= 0,
then � 6= 0 and A�1x = (1/�)x, so eigenvalues of inverse
are reciprocals of eigenvalues of original matrix

Powers : If Ax = �x, then Akx = �kx, so eigenvalues of
power of matrix are same power of eigenvalues of original
matrix

Polynomial : If Ax = �x and p(t) is polynomial, then
p(A)x = p(�)x, so eigenvalues of polynomial in matrix are
values of polynomial evaluated at eigenvalues of original
matrix

Michael T. Heath Scientific Computing 21 / 87
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Similarity Transformation

B is similar to A if there is nonsingular matrix T such that

B = T�1A T

Then

By = �y ) T�1ATy = �y ) A(Ty) = �(Ty)

so A and B have same eigenvalues, and if y is
eigenvector of B, then x = Ty is eigenvector of A

Similarity transformations preserve eigenvalues and
eigenvectors are easily recovered
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Example: Similarity Transformation

From eigenvalues and eigenvectors for previous example,


3 �1

�1 3

� 
1 1

1 �1

�
=


1 1

1 �1

� 
2 0

0 4

�

and hence

0.5 0.5
0.5 �0.5

� 
3 �1

�1 3

� 
1 1

1 �1

�
=


2 0

0 4

�

So original matrix is similar to diagonal matrix, and
eigenvectors form columns of similarity transformation
matrix
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Diagonal Form

Eigenvalues of diagonal matrix are diagonal entries, and
eigenvectors are columns of identity matrix

Diagonal form is desirable in simplifying eigenvalue
problems for general matrices by similarity transformations

But not all matrices are diagonalizable by similarity
transformation

Closest one can get, in general, is Jordan form, which is
nearly diagonal but may have some nonzero entries on first
superdiagonal, corresponding to one or more multiple
eigenvalues
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Simple non-diagonalizable example, 2 £ 2 Jordan block: 

Simple non-diagonalizable example, 2⇥ 2 Jordan block:
"
1 1

0 1

# 
x1

x2

!
= �

 
x1

x2

!

�����
1� � 1

0 1� �

����� = (1� �)2 = 0

Only one eigenvector: x =

 
1

0

!

"
1 1

0 1

# 
1

0

!
=

 
1

0

!

1



3⇥ 3 Non-Diagonalizable Example

A =

2

664

2

2

2

3

775 , B =

2

664

2 1

2 1

2

3

775 .

• Characteristic polynomial is (�� 2)3 for both A and B.

• Algebraic multiplicity is 3.

• For A, three eigenvectors. Say, e1, e2, and e3.

• For B, only one eigenvector (↵e1), so geometric multiplicity of B is 1.
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Triangular Form

Any matrix can be transformed into triangular (Schur ) form
by similarity, and eigenvalues of triangular matrix are
diagonal entries
Eigenvectors of triangular matrix less obvious, but still
straightforward to compute
If

A� �I =

2

4
U11 u U13

0 0 vT

O 0 U33

3

5

is triangular, then U11y = u can be solved for y, so that

x =

2

4
y

�1

0

3

5

is corresponding eigenvector
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Eigenvectors / Eigenvalues of Upper Triangular Matrix 

Suppose A is upper triangular

A =

2

664

A11 u U13

0 � vT

O 0 A33

3

775

Then

0 = (A� �I)x =

2

664

U11 u U13

0 0 vT

O 0 U33

3

775

0

BB@

y

�1

0

1

CCA =

0

BB@

U11y � u

0

0

1

CCA

(A� �I) x 0

Because U11 is nonsingular, can solve U11y = u to find eigenvector x.

1
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Block Triangular Form

If

A =

2

6664

A11 A12 · · · A1p

A22 · · · A2p
. . . ...

App

3

7775

with square diagonal blocks, then

�(A) =

p[

j=1

�(Ajj)

so eigenvalue problem breaks into p smaller eigenvalue
problems
Real Schur form has 1⇥ 1 diagonal blocks corresponding
to real eigenvalues and 2⇥ 2 diagonal blocks
corresponding to pairs of complex conjugate eigenvalues
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Eigenvalue-Revealing Factorizations

Eigenvalue-Revealing Factorizations

• Diagonalization: A = X⇤X�1
if A is nondefective.

• Unitary diagonalization: A = Q⇤Q⇤
if A is normal.

• Unitary triangularization: A = QTQ⇤
always exists.

(T upper triangular.)
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Forms Attainable by Similarity
A T B

distinct eigenvalues nonsingular diagonal
real symmetric orthogonal real diagonal
complex Hermitian unitary real diagonal
normal unitary diagonal
arbitrary real orthogonal real block triangular

(real Schur)
arbitrary unitary upper triangular

(Schur)
arbitrary nonsingular almost diagonal

(Jordan)

Given matrix A with indicated property, matrices B and T
exist with indicated properties such that B = T�1AT
If B is diagonal or triangular, eigenvalues are its diagonal
entries
If B is diagonal, eigenvectors are columns of T
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Always 
exists 



Similarity Transformations

• Given B = T�1AT

A = T B T�1

• If A is normal (AAH
= AHA),

A = Q⇤QH

B is diagonal, T is unitary (T�1
= TH

).

• If A is symmetric real,

A = Q⇤QT

B is diagonal, T is orthogonal (T�1
= T T

).

• If B is diagonal, T is the matrix of eigenvectors.
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Power Iteration

Simplest method for computing one eigenvalue-
eigenvector pair is power iteration, which repeatedly
multiplies matrix times initial starting vector

Assume A has unique eigenvalue of maximum modulus,
say �1, with corresponding eigenvector v1

Then, starting from nonzero vector x0, iteration scheme

xk = Axk�1

converges to multiple of eigenvector v1 corresponding to
dominant eigenvalue �1
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Convergence of Power Iteration

To see why power iteration converges to dominant
eigenvector, express starting vector x0 as linear
combination

x0 =

nX

i=1

↵ivi

where vi are eigenvectors of A
Then

xk = Axk�1 = A2xk�2 = · · · = Akx0 =

nX

i=1

�k
i ↵ivi = �k

1

 
↵1v1 +

nX

i=2

(�i/�1)
k↵ivi

!

Since |�i/�1| < 1 for i > 1, successively higher powers go
to zero, leaving only component corresponding to v1
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2 x 2 Example 

A =

"
1.5 0.5

0.5 1.5

#

D =

"
1

2

#
X =

"
�1/

p
2 1/

p
2

1/
p
2 1/

p
2

#

1
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Example: Power Iteration
Ratio of values of given component of xk from one iteration
to next converges to dominant eigenvalue �1

For example, if A =


1.5 0.5
0.5 1.5

�
and x0 =


0

1

�
, we obtain

k xT
k ratio

0 0.0 1.0
1 0.5 1.5 1.500
2 1.5 2.5 1.667
3 3.5 4.5 1.800
4 7.5 8.5 1.889
5 15.5 16.5 1.941
6 31.5 32.5 1.970
7 63.5 64.5 1.985
8 127.5 128.5 1.992

Ratio is converging to dominant eigenvalue, which is 2
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xk = Axk�1
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Limitations of Power Iteration

Power iteration can fail for various reasons

Starting vector may have no component in dominant
eigenvector v1 (i.e., ↵1 = 0) — not problem in practice
because rounding error usually introduces such
component in any case

There may be more than one eigenvalue having same
(maximum) modulus, in which case iteration may converge
to linear combination of corresponding eigenvectors

For real matrix and starting vector, iteration can never
converge to complex vector
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Normalized Power Iteration

Geometric growth of components at each iteration risks
eventual overflow (or underflow if �1 < 1)

Approximate eigenvector should be normalized at each
iteration, say, by requiring its largest component to be 1 in
modulus, giving iteration scheme

yk = Axk�1

xk = yk/kykk1
With normalization, kykk1 ! |�1|, and xk ! v1/kv1k1
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Example: Normalized Power Iteration

Repeating previous example with normalized scheme,

k xT
k kykk1

0 0.000 1.0
1 0.333 1.0 1.500
2 0.600 1.0 1.667
3 0.778 1.0 1.800
4 0.882 1.0 1.889
5 0.939 1.0 1.941
6 0.969 1.0 1.970
7 0.984 1.0 1.985
8 0.992 1.0 1.992

< interactive example >
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Geometric Interpretation

Behavior of power iteration depicted geometrically

Initial vector x0 = v1 + v2 contains equal components in
eigenvectors v1 and v2 (dashed arrows)

Repeated multiplication by A causes component in v1
(corresponding to larger eigenvalue, 2) to dominate, so
sequence of vectors xk converges to v1
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Note: 1-norm = 1. 



Convergence Rate of Power Iteration 

Convergence rate of power iteration depends on relative separation of �1 and �2.

Assuming c1 6= 0 and |�1| > |�j|, j > 1, we have

A

k
x =

nX

j=1

xj �
k
j cj

= �

k
1 c1

"
x1 +

nX

j=2

xj

�

k
j

�

k
1

cj

c1

#

⇠ x1 �
k
1 c1 as k �! 1

⇠ �

k
1 c1

"
x1 + x2

✓
�2

�1

◆k
c2

c1

#

1

eig_power_sep.m 
eig_power_sep2.m 



Convergence Rate of Power Iteration 



Convergence Rate of Power Iteration 
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Power Iteration with Shift

Convergence rate of power iteration depends on ratio
|�2/�1|, where �2 is eigenvalue having second largest
modulus

May be possible to choose shift, A� �I, such that
����
�2 � �

�1 � �

���� <
����
�2

�1

����

so convergence is accelerated

Shift must then be added to result to obtain eigenvalue of
original matrix
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Example: Power Iteration with Shift

In earlier example, for instance, if we pick shift of � = 1,
(which is equal to other eigenvalue) then ratio becomes
zero and method converges in one iteration

In general, we would not be able to make such fortuitous
choice, but shifts can still be extremely useful in some
contexts, as we will see later
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Idea 1:  Pick shifts at each iteration as estimate of spectrum emerges. 
 
Idea 2: Use shift in context of inverse iteration, where separation ratio 
can be made arbitrarily small.    



Power Iteration with Shift 

(A� �I)x = �x� �x = (�� �)x = µx

If �k 2 {1 .9 . . . .1}, then
�2

�1
= 0.9

If � = 0.4, then µk 2 {.5 .4 . . . � .4} and

µ2

µ1
= 0.8,

so about twice the convergence rate.

Shifted power iteration, however, is somewhat limited.

The real power derives from inverse power iterations with shifts.

1
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Inverse Iteration

If smallest eigenvalue of matrix required rather than
largest, can make use of fact that eigenvalues of A�1 are
reciprocals of those of A, so smallest eigenvalue of A is
reciprocal of largest eigenvalue of A�1

This leads to inverse iteration scheme

Ayk = xk�1

xk = yk/kykk1
which is equivalent to power iteration applied to A�1

Inverse of A not computed explicitly, but factorization of A
used to solve system of linear equations at each iteration
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Inverse Iteration, continued

Inverse iteration converges to eigenvector corresponding
to smallest eigenvalue of A

Eigenvalue obtained is dominant eigenvalue of A�1, and
hence its reciprocal is smallest eigenvalue of A in modulus
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Example: Inverse Iteration

Applying inverse iteration to previous example to compute
smallest eigenvalue yields sequence

k xT
k kykk1

0 0.000 1.0
1 �0.333 1.0 0.750
2 �0.600 1.0 0.833
3 �0.778 1.0 0.900
4 �0.882 1.0 0.944
5 �0.939 1.0 0.971
6 �0.969 1.0 0.985

which is indeed converging to 1 (which is its own reciprocal
in this case)

< interactive example >
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Inverse Iteration with Shift

As before, shifting strategy, working with A� �I for some
scalar �, can greatly improve convergence

Inverse iteration is particularly useful for computing
eigenvector corresponding to approximate eigenvalue,
since it converges rapidly when applied to shifted matrix
A� �I, where � is approximate eigenvalue

Inverse iteration is also useful for computing eigenvalue
closest to given value �, since if � is used as shift, then
desired eigenvalue corresponds to smallest eigenvalue of
shifted matrix
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• Power Iteration: x = Ak
x �! cx1

• Normalized
Power Iteration:

y = Ax
x = y/||y||

�
||y|| �! |�1|
x �! x1

• Inverse Iteration:
y = A�1

x

x = y/||y||

�
||y|| �! |�n|�1

x �! xn

• Inverse Iteration
with shift:

M = A� �I
y = M�1

x

x = y/||y||

9
=

;
||y|| �! |µk| = max |�k � �|�1

x �! xk

Inverse iteration with shift can be arbitrarily fast since separation ratio can be 0.



• Inverse Iteration:

x

k = A

�k
x

0

=
nX

j=1

xj

✓
1

�j

◆k

cj

=

✓
1

�n

◆k

cn

"
xn +

n�1X

j=1

xj

✓
�n

�j

◆k

cj

#
.



Inverse Iteration Illustration 

❑  With shift and invert, can get significant ratios of dominant eigenvalue 

Eigenvalues of A                          Eigenvalues of A-1 

Ratio ~ .9                                 Ratio = 0.5 



eig_shift_invert.m 

• Inverse Iteration with Shift: Let

M := A� �I

µj := �j � �, and

l such that |�l � �| < |�j � �|, j 6= l.

Then,

x

k
= M�k

x

0

=

nX

j=1

xj

✓
1

µj

◆k

cj

=

✓
1

µl

◆k

cl

2

4
xl +

X

j 6=l

xj

✓
µl

µj

◆k

cj

3

5 .

• Using current approximation to �l can select |���l| = |µl| to be small.

(Cannot do the same with shifted power iteration.)

• Blow-up is contained by normalizing after each iteration.
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Rayleigh Quotient

Given approximate eigenvector x for real matrix A,
determining best estimate for corresponding eigenvalue �
can be considered as n⇥ 1 linear least squares
approximation problem

x� ⇠
=

Ax

From normal equation xTx� = xTAx, least squares
solution is given by

� =

xTAx

xTx

This quantity, known as Rayleigh quotient, has many useful
properties
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Example: Rayleigh Quotient

Rayleigh quotient can accelerate convergence of iterative
methods such as power iteration, since Rayleigh quotient
xT
kAxk/xT

k xk gives better approximation to eigenvalue at
iteration k than does basic method alone
For previous example using power iteration, value of
Rayleigh quotient at each iteration is shown below

k xT
k kykk1 xT

kAxk/xT
k xk

0 0.000 1.0
1 0.333 1.0 1.500 1.500
2 0.600 1.0 1.667 1.800
3 0.778 1.0 1.800 1.941
4 0.882 1.0 1.889 1.985
5 0.939 1.0 1.941 1.996
6 0.969 1.0 1.970 1.999
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Rayleigh Quotient Convergence

• Assume A is a symmetric matrix and x is close to an eigenvector,

x = c1x1 +

nX

j=2

cj xj, |cj| = ✏ for j � 2

• If ||x|| = 1, then the Rayleigh quotient

r(x) =

x

TA x

x

T
x

= x

TA x

=

nX

i=1

nX

j=1

ci cj �ix
T
i xj

=

nX

i=1

c2i �i

=

�
1� n✏2

�
�1 + ✏2

nX

i=2

�i

Convergence to ¸1 is twice as fast as convergence to x1 



❑  Rayleigh quotient is stationary at eigenvectors. 
❑  It takes on min/max when j=n or 1. 
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Rayleigh Quotient Iteration

Given approximate eigenvector, Rayleigh quotient yields
good estimate for corresponding eigenvalue

Conversely, inverse iteration converges rapidly to
eigenvector if approximate eigenvalue is used as shift, with
one iteration often sufficing

These two ideas combined in Rayleigh quotient iteration

�k = xT
kAxk/x

T
k xk

(A� �kI)yk+1 = xk

xk+1 = yk+1/kyk+1k1
starting from given nonzero vector x0
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Rayleigh Quotient Iteration, continued

Rayleigh quotient iteration is especially effective for
symmetric matrices and usually converges very rapidly

Using different shift at each iteration means matrix must be
refactored each time to solve linear system, so cost per
iteration is high unless matrix has special form that makes
factorization easy

Same idea also works for complex matrices, for which
transpose is replaced by conjugate transpose, so Rayleigh
quotient becomes xHAx/xHx
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Example: Rayleigh Quotient Iteration

Using same matrix as previous examples and randomly
chosen starting vector x0, Rayleigh quotient iteration
converges in two iterations

k xT
k �k

0 0.807 0.397 1.896
1 0.924 1.000 1.998
2 1.000 1.000 2.000
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eig_shift_invert.m 

Rayleigh Quotient Iteration 



eig_shift_invert.m 

Rayleigh Quotient Iteration 
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Deflation

After eigenvalue �1 and corresponding eigenvector x1

have been computed, then additional eigenvalues
�2, . . . ,�n of A can be computed by deflation, which
effectively removes known eigenvalue

Let H be any nonsingular matrix such that Hx1 = ↵e1,
scalar multiple of first column of identity matrix
(Householder transformation is good choice for H)

Then similarity transformation determined by H transforms
A into form

HAH�1
=


�1 bT

0 B

�

where B is matrix of order n� 1 having eigenvalues
�2, . . . ,�n

Michael T. Heath Scientific Computing 46 / 87



Eigenvalue Problems
Existence, Uniqueness, and Conditioning
Computing Eigenvalues and Eigenvectors

Problem Transformations
Power Iteration and Variants
Other Methods

Deflation, continued

Thus, we can work with B to compute next eigenvalue �2

Moreover, if y2 is eigenvector of B corresponding to �2,
then

x2 = H�1


↵
y2

�
, where ↵ =

bTy2

�2 � �1

is eigenvector corresponding to �2 for original matrix A,
provided �1 6= �2

Process can be repeated to find additional eigenvalues
and eigenvectors
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Deflation, continued

Alternative approach lets u1 be any vector such that
uT
1 x1 = �1

Then A� x1uT
1 has eigenvalues 0,�2, . . . ,�n

Possible choices for u1 include
u1 = �1x1, if A is symmetric and x1 is normalized so that
kx1k2 = 1

u1 = �1y1, where y1 is corresponding left eigenvector (i.e.,
ATy1 = �1y1) normalized so that yT

1 x1 = 1

u1 = ATek, if x1 is normalized so that kx1k1 = 1 and kth
component of x1 is 1
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Deflation – Finding Second Eigenpair Deflation – chasing second eigenpair (x2, �2).

• Choose H to be elementary Householder matrix such that Hx1 = e1.

• Consider

Ax1 = �1 x1

AH�1Hx1 = �1H
�1Hx1

AH�1
e1 = �1H

�1
e1

HAH�1
e1 = �1 e1 ⇤

A2 := HAH�1 = HAH�1 I

= HAH�1 [ e1 e2 . . . en ]

=

2

664

�1 b

T

0
0 B
0

3

775

• Apply method of choice to B to find �2.



Matrix-Free Deflation 

Deflation via Projection.

for k = 1, 2,...

y = Ax

y = y � x1
x

T
1 y

x

T
1 x1

= y � x1x
T
1 y

x = y/||y||.

• Guarantees that x is devoid of any component of x1 prior
to start of each application of power method.

• Do not require knowledge of A.

• Only need a routine that provides y � Ax.

• Convenient for large sparse matrices when trying to
avoid computing known eigenpairs.



Deflation on the Fly – Subspace Iteration 

Can e↵ect deflation on the fly — Subspace Iteration.

• Take two independent vectors Y = (y1 y2).

for k = 1, 2,...

Z = AY

y1 = z1/||z1||.

y2 = z2 � y1y
T
1 z2

y2 = y2/||y2||

• (y1 y2) converge to the first two eigenvectors (x1 x2).

(…assuming orthogonal eigenvectors) 

Q: What is rate of convergence for y1 ! x1 ? 
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Simultaneous Iteration

Simplest method for computing many eigenvalue-
eigenvector pairs is simultaneous iteration, which
repeatedly multiplies matrix times matrix of initial starting
vectors

Starting from n⇥ p matrix X0 of rank p, iteration scheme is

Xk = AXk�1

span(Xk) converges to invariant subspace determined by
p largest eigenvalues of A, provided |�p| > |�p+1|
Also called subspace iteration
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Orthogonal Iteration

As with power iteration, normalization is needed with
simultaneous iteration
Each column of Xk converges to dominant eigenvector, so
columns of Xk become increasingly ill-conditioned basis
for span(Xk)

Both issues can be addressed by computing QR
factorization at each iteration

ˆQkRk = Xk�1

Xk = A ˆQk

where ˆQkRk is reduced QR factorization of Xk�1

This orthogonal iteration converges to block triangular
form, and leading block is triangular if moduli of
consecutive eigenvalues are distinct
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Subspace Iteration Variants 

Let X0 2 lR

n⇥p
be a matrix of rank p.

• Alg. 1:

for k = 1, 2,...

Xk = AXk�1

end

• Alg. 2:

for k = 1, 2,...

QR = X Q 2 lR

n⇥p
, orthogonal

X = AQ

end

Note: in power iteration notation, Alg. 2 would be:

for k = 1, 2,...

Y = AX Q 2 lR

n⇥p
, orthogonal

X = Y R

�1  � orthonormalize

end

and X

k �! (x1 x2 . . . xp).

So, for Alg. 2:

Q

k
= (q

1
q

2
. . . q

p
) �! (x1 x2 . . . xp),

X

k �! (�1x1 �2x2 . . . �pxp).

1



Simultaneous Iteration 

for k = 1, 2, . . .

Z = AQ

QR = Z (Normalize z1, orthonormalize zj, j > 1.)

end

• Results:

Q = [q1 q2 . . . qp] �! [x1 x2 . . . xp]

Rkk �! �k if first p eigenvalues have distinct modulus.

• This is a Rayleigh quotient scheme.

• Rate of convergence for �1 is the same as power iteration with

Rayleigh quotient:

R = QTZ = QTAQ

r11 =

q

T
1Aq1

q

T
1 q1

= Rayleigh quotient.

• q1 is una↵ected by the presence of qj, j > 1.

• Convergence of the entire subspace will depend on the ratio �p+1/�p.

• Convergence of �p will also depend on the ratio �p/�p�1.

• Expect convergence of �p to scale like s2k, where

s := max

⇢����
�p+1

�p

����

����
�p

�p�1

����

�
< 1,

assuming distinct moduli.

(…assuming orthogonal eigenvectors) 
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Simultaneous Iteration 

• q1 is una↵ected by the presence of qj, j > 1.

• Convergence of the entire subspace will depend on the ratio �p+1/�p.

• Convergence of �p will also depend on the ratio �p/�p�1.

• Expect convergence of �p to scale like s2k, where

s := max

⇢����
�p+1

�p

����

����
�p

�p�1

����

�
< 1,

assuming distinct moduli.

• Can extend Z to span all of Rn
(i.e., p = n, Z is square).

• In this case, convergence of �n will scale like (�n�1/�n)
2k
.

• This is similar to Rayleigh quotient iteration without shift.

• Can incorporate shift also.

• But there is a more e�cient “simultaneous iteration” scheme:

QR-iteration.
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Orthogonal Iteration

As with power iteration, normalization is needed with
simultaneous iteration
Each column of Xk converges to dominant eigenvector, so
columns of Xk become increasingly ill-conditioned basis
for span(Xk)

Both issues can be addressed by computing QR
factorization at each iteration

ˆQkRk = Xk�1

Xk = A ˆQk

where ˆQkRk is reduced QR factorization of Xk�1

This orthogonal iteration converges to block triangular
form, and leading block is triangular if moduli of
consecutive eigenvalues are distinct
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QR Iteration

For p = n and X0 = I, matrices

Ak =

ˆQH
k A ˆQk

generated by orthogonal iteration converge to triangular or
block triangular form, yielding all eigenvalues of A

QR iteration computes successive matrices Ak without
forming above product explicitly

Starting with A0 = A, at iteration k compute QR
factorization

QkRk = Ak�1

and form reverse product

Ak = RkQk
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QR Iteration, continued

Successive matrices Ak are unitarily similar to each other

Ak = RkQk = QH
k Ak�1Qk

Diagonal entries (or eigenvalues of diagonal blocks) of Ak

converge to eigenvalues of A

Product of orthogonal matrices Qk converges to matrix of
corresponding eigenvectors

If A is symmetric, then symmetry is preserved by QR
iteration, so Ak converge to matrix that is both triangular
and symmetric, hence diagonal
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QR Iteration 

Recall similarity transformation:

A : B = T

�1
AT same eigenvalues

With Bz = �z, we have:

Bz = T

�1
ATz = �z

ATz = �Tz

Ax = �x, with x := Tz

Starting with A0 = A, we consider a sequence of similarity transformations:

Ak = Q

T
k Ak�1 Qk = Q

�1
k Ak�1 Qk

2



QR Iteration 

Start with A0 = A.

• Alg. QR:

for k = 1, 2,...

Qk Rk = Ak�1 Rk = QT
k Ak�1 Qk = Ak�1R

�1
k

Ak = Rk Qk Ak = QT
k Ak�1Qk Ak = RkAk�1R

�1
k

end

• Net result is similarity transformation

Ak = (QT
k QT

k�1 · · ·QT
1 )A (Q1 Q2 · · ·Qk)

• Eigenvalues and symmetry are preserved.

• Can use a di↵erent orthogonal matrix A0 := QT
0AQ0 to start.

5



QR Iteration 

Note that Q1R1 = A0 = A.

A2
= Q1 R1 Q1 R1

= Q1 Q2 R2 R1 =:

ˆQ2
ˆR2

A3
= Q1 R1 Q1 R1 Q1 R1

= Q1 Q2 R2 Q2 R2 R1 =:

ˆQ2
ˆR2

= Q1 Q2 Q3 R3 R2 R1 =:

ˆQ3
ˆR3

Ak
=

ˆQk
ˆRk

• Algorithm produces successive powers of A.

1



Comparison of QR and Subspace Iteration 

First, define the following quantities:

Q̂k := Q1 Q2 · · ·Qk

Ak := Q̂T
k AQ̂k

R̂k := Rk Rk�1 · · ·R1,

where Q̂k and Qk are orthogonal matrices.

Consider the QR subspace iteration with p = n:

for k = 1, 2,...

Q̂kRk = Xk�1

Xk = AQ̂k

end

We have the following results

Q̂k+1Rk+1 = AQ̂k

= Q̂kQ̂
T
kAQ̂k

= Q̂kAk

Q̂k+1Rk+1Qk+1 = Q̂kQk+1Q
T
k+1AkQk+1

= (Q̂kQk+1)Ak+1

= Q̂k+1Ak+1

Rk+1Qk+1 = Ak+1.

Thus, we have a way of generating Q̂k := Q1 Q2 · · ·Qk

through the following QR iteration:

for k = 1, 2,...

QkRk = Ak�1

Ak = RkQk

Q̂k = Q̂k�1Qk

end

3

If A is normal, columns approach eigenvectors 



Comparison of Simultaneous Iteration and QR Iteration

• Use Q̂ and R̃ for simultaneous iteration, Q and R for QR iteration.

• Then show the relationship among these variables.

• First, we recall the basic iterations...

Simultaneous Iteration

• Start with Z0 2 Rn⇥n.

Q̂1R̃1 = Z0

Z1 = AQ̂1

Q̂2R̃2 = Z1

Z2 = AQ̂2
...

QR Iteration

• Start with A0 = A.

Q1R1 = A0

A1 = R1Q1

Q2R2 = A1

A2 = R2Q2
...
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Interpretations as powers of A

Simultaneous Iteration

• Start with Z0 2 Rn⇥n.

Q̂1R̃1 = Z0

Z1 = AQ̂1

= AZ0R̃
�1
1

Z2 = AZ1R̃
�1
2

= A2Z0R̃
�1
1 R̃�1

2

Zk = AkZ0R̃
�1
1 · · · R̃�1

k

AkZ0 = ZkR̃k · · · R̃1

= Q̂k+1R̃k+1R̃k · · · R̃1

=: Q̂k+1R̂k+1

• If we take Z0 := A, we have

Ak�1Z0 = Ak = Q̂kR̃k · · · R̃1

=: Q̂kR̂k.

QR Iteration

• Start with A0 = A.

Q1R1 = A0 = A

A1 = R1Q1

Ak = (Q1R1)
k

A2 = Q1R1Q1R1

= Q1Q2R2R1

A3 = Q1R1Q1R1Q1R1

= Q1Q2R2Q2R2R1

= Q1Q2Q3R3R2R1

Ak = Q1 · · ·QkRk · · ·R1

= Q̂kR̂k

• Up to the signs of the columns of Q̂k and corresponding coe�cients in
R̂k, the QR-factorization of Ak is unique.

• So the two algorithms produce common Q̂R̂ factorizations of Ak.

• (In fact, can show that the sequences are identical, modulo round-o↵.)
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Qualitative Interpretation of QR Iteration

• Notice that when we run the QR-iteration we should generate

Q̂k := Q̂k�1Qk = Q1Q2 · · ·Qk,

as it is the matrix that contains the approximate eigenvectors.

• Recall that since

Ak = RkQk = QT
k (QkRk)Qk = QT

kAk�1Qk,

we have Ak = Q̂T
kAQ̂k.

• If A has n orthogonal eigenvectors, then as Q̂k �! X, the matrix
of eigenvectors, we have

Ak = Q̂T
kAQ̂k �! X�1AX �! D,

the matrix of eigenvalues.



Starting QR Iteration with A0 6= A

• The matrix power A is clearly evident in simultaneous iteration,
Zk = AQ̂k, but not so in QR-iteration.

• If we start with A0 6= A, all we can say about QR iteration is
that it converges to the eigenpairs of A0.

• However, if we start with A0 = QT
0AQ0 then the powers of A0 are simply

Ak
0 = (QT

0AQ0)(Q
T
0AQ0) · · · (QT

0AQ0)

= (QT
0AA · · ·AQ0

= QT
0A

kQ0,

which will converge to the same set of eigenvalues.

• The eigenvectors are recovered from the following relationships:

Ak
0 = Q̂kR̂k

A0Q̂k = Q̂k⇤

QT
0AQ0Q̂k = Q̂k⇤

AQ0Q̂k = Q0Q̂k⇤,

which imples X = Q0Q̂k under the assumption that (Q̂k,⇤) is the
converged set of eigenpairs for A0.
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Preliminary Reduction

Efficiency of QR iteration can be enhanced by first
transforming matrix as close to triangular form as possible
before beginning iterations

Hessenberg matrix is triangular except for one additional
nonzero diagonal immediately adjacent to main diagonal

Any matrix can be reduced to Hessenberg form in finite
number of steps by orthogonal similarity transformation, for
example using Householder transformations

Symmetric Hessenberg matrix is tridiagonal

Hessenberg or tridiagonal form is preserved during
successive QR iterations
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Upper Hessenberg X Upper Triangular is Upper Hessenberg Upper Hessenberg ⇥ upper triangular is upper Hessenberg.
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• Same for upper triangular ⇥ upper Hessenberg.

• Start QR iteration with A0 := QT
0AQ0

such that A0 is upper Hessenberg.

• Then each Ak is upper Hessenberg, and
QkRk can be done with Givens rotations
in O(n2) operations, instead of O(n3).

• With shifted QR, need only O(n) iterations,
so total cost is O(n3).

QR iteration:

for k = 1, 2,...i

QkRk = Ak�1

Ak = RkQk

end

1
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Preliminary Reduction, continued

Advantages of initial reduction to upper Hessenberg or
tridiagonal form

Work per QR iteration is reduced from O(n3
) to O(n2

) for
general matrix or O(n) for symmetric matrix

Fewer QR iterations are required because matrix nearly
triangular (or diagonal) already

If any zero entries on first subdiagonal, then matrix is block
triangular and problem can be broken into two or more
smaller subproblems
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Example: QR Iteration

Let A0 =


7 2

2 4

�

Compute QR factorization

A0 = Q1R1 =


.962 �.275
.275 .962

� 
7.28 3.02
0 3.30

�

and form reverse product

A1 = R1Q1 =


7.83 .906
.906 3.17

�

Off-diagonal entries are now smaller, and diagonal entries
closer to eigenvalues, 8 and 3
Process continues until matrix is within tolerance of being
diagonal, and diagonal entries then closely approximate
eigenvalues
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QR Iteration with Shifts

Convergence rate of QR iteration can be accelerated by
incorporating shifts

QkRk = Ak�1 � �kI

Ak = RkQk + �kI

where �k is rough approximation to eigenvalue

Good shift can be determined by computing eigenvalues of
2⇥ 2 submatrix in lower right corner of matrix
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Example: QR Iteration with Shifts

Repeat previous example, but with shift of �1 = 4, which is
lower right corner entry of matrix
We compute QR factorization

A0 � �1I = Q1R1 =


.832 .555
.555 �.832

� 
3.61 1.66
0 1.11

�

and form reverse product, adding back shift to obtain

A1 = R1Q1 + �1I =


7.92 .615
.615 3.08

�

After one iteration, off-diagonal entries smaller compared
with unshifted algorithm, and eigenvalues closer
approximations to eigenvalues

< interactive example >
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Preliminary Reduction, continued

QR iteration is implemented in two-stages
symmetric �! tridiagonal �! diagonal

or

general �! Hessenberg �! triangular

Preliminary reduction requires definite number of steps,
whereas subsequent iterative stage continues until
convergence

In practice only modest number of iterations usually
required, so much of work is in preliminary reduction

Cost of accumulating eigenvectors, if needed, dominates
total cost
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Cost of QR Iteration

Approximate overall cost of preliminary reduction and QR
iteration, counting both additions and multiplications

Symmetric matrices
4
3n

3 for eigenvalues only
9n3 for eigenvalues and eigenvectors

General matrices
10n3 for eigenvalues only
25n3 for eigenvalues and eigenvectors
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Krylov Subspace Methods

• Assume in the following that A is a symmetric positive definite matrix
with eigenvalues �1 � �2 � · · · � �n.

• Suppose we take k iterations of the power method to approximate �1:

Algorithm:

yk = A

k
x

� =
y

T
kAyk

y

T
k yk

⇡ �1

Code:

y = x

for j = 1 : k

y = Ay

end

� =
y

T
Ay

y

T
y

• This approach uses no information from preceding iterates, yk�1, yk�2, . . . y1.



Krylov Subspace Methods

• Suppose instead, we seek (for y 6= 0),

� = max
y2Kk+1

y

T
Ay

y

T
y

= max
y2lPk(A)x

y

T
Ay

y

T
y

 max
y2lRn

y

T
Ay

y

T
y

= �1.

• Here, the Krylov subspace

Kk+1 = Kk+1(A,x) = span{x Ax A

2
x . . . A

k
x}

is the space of all polynomials of degree  k in A times x:

Kk+1(A,x) = lPk(A)x.

Estimated eigenvalue Actual eigenvalue 



Krylov Subspace Methods

• Consider the n⇥ (k + 1) matrix

Vk+1 =
⇥
x Ax A

2
x . . . A

k
x

⇤

• Assuming Vk+1 has full rank (k+1 linearly independent columns),
then any y 2 Kk+1 has the form

y = Vk+1 z, z 2 lRk+1
.

• Our optimal Rayleigh quotient amounts to

� = max
y2Kk+1

y

T
Ay

y

T
y

= max
z2lRk+1

z

T
�
V

T
k+1AVk+1

�
z

z

T
�
V

T
k+1Vk+1

�
z



Krylov Subspace Methods

• If we had columns vj that were orthonormal (vT
i vj = �ij), then we’d

have V

T
k+1Vk+1 = I and

� = max
y2R(Vk+1)

y

T
Ay

y

T
y

= max
z2lRk+1

z

T
�
V

T
k+1AVk+1

�
z

z

T
�
V

T
k+1Vk+1

�
z

= max
z2lRk+1

z

T
Tk+1 z

z

T
z

= µ1(Tk+1)  �1(A).

• Here, µ1 is the maximum eigenvalue of Tk+1 := V

T
k+1AVk+1.





Krylov Subspace Methods

• This is the idea behind Arnoldi / Lanczos iteration.

• We use information from the entire Krylov subspace to generate optimal
eigenpair approximations.

• They require only matrix-vector products (unlike QR iteration, which
requires all of A).

• The approximation to �1 is given by the eigenvalue µ1 of the much smaller
(k + 1)⇥ (k + 1) matrix, Tk+1.

• It is the closest approximation to �1 out of all possible polynomials of
degree k in A and therefore superior (or equal to) the power method.

• Similarly, µk is the closest approximation to �n.

• The methods produce the best possible approximations (in this subspace)
to the extreme eigenvalue/vector pairs.

• Middle eigenpairs are more challenging—must use shift & invert.



Krylov Subspace Methods

• Note, for ||z|| = 1,

µ1 = max
||z||=1

z

T
Tk+1 z

corresponds to z = z1, so

µ1 = z

T
1 Tk+1 z1 = z

T
1 V

T
k+1AVk+1 z1 ⇡ �1.

• So, corresponding eigenvector approximation for Ax1 = �1x1 is

x1 ⇡ Vk+1z1.



Krylov Subspace Methods

• Remark: Shifting does not improve Lanczos / Arnoldi. WHY?



Krylov Subspace Methods

• Remark: Shifting does not improve Lanczos / Arnoldi. WHY?

– If p(x) 2 lPk(x), so is p(x+ 1), p(ax+ b), etc.

– So: K(A,x) ⌘ K(A+ ↵I,x).

– The spaces are the same and the Krylov subspace projections will
find the same optimal solutions.

• Shifting may help with conditioning, however, in certain circumstances.

• The essential steps of the algorithms is to construct, step by step, an
orthogonal basis for Kk.

• We turn to this for the symmetric (Lanczos) case.



Krylov Subspace Methods

• We start with the symmetric case, known as Lanczos iteration.

• The essence of the method is to construct, step by step, an
orthogonal basis for Kk.

q1 = x/||x||;
for k = 1, . . .

u = Aqk, u0 = ||u||
u = u � Pk u

�k = ||u||
if �k/u0 < ✏, break

qk+1 = u/�k

end

• Here, Pk := QkQ
T
k , is the orthogonal projector onto R(Qk), so

u = u� Pku = u�
kX

j=1

qj q
T
j u,

which is implemented as modified Gram-Schmidt orthogonalization.

• Q: Why is u0 useful?

Qk := (q1 q2 · · · qk)



Krylov Subspace Generation

• Notice how the orthogonal subspace is constructed.

q1 2 {x}
q2 2 {x, Ax}
qk 2 {x, Ax, . . . , Ak�1

x} = Kk

• In the algorithm, we have

u = Aqk

q

T
j u = q

T
j Aqk

= q

T
kA

T
qj = q

T
kAqj

= q

T
kwj+1, wj+1 := Aqj 2 Kj+1

• However,

qk ? Kj+1 8 j + 1 < k.

• Therefore

u = u� Pku

= u � qk

�
q

T
kAqk

�
� qk�1

�
q

T
k�1Aqk

�

= u � qk↵k � qk�1�k�1,

↵k := q

T
kAqk �k := ||uk�1||.



Lanczos Iteration (A Symmetric)

• The Lancos iteration is:

q1 = x/||x||;
for k = 1, . . .

u = Aqk, u0 = ||u||
↵k = q

T
ku

u = u � ↵kqk � �k�1qk�1

�k = ||u||
if �k/u0 < ✏, break

qk+1 = u/�k

end



Lanczos Iteration (A Symmetric)

• In matrix form,

AQk = QkTk + �k+1qk+1e
T
k

• Or,

A [q1 q2 · · · qk] = [q1 q2 · · · qk]

2

666664

↵1 �1

�1 ↵1 �1

. . . . . .
�k�1

�k�1 ↵k

3

777775
+ �k+1qk+1e

T
k .



Arnoldi Iteration (A Nonsymmetric)

• Arnoldi iteration is essentially the same as Lanczos, save that we do not
get the short term recurrence.

q1 = x/||x||;
for k = 1, . . .

u = Aqk, u0 = ||u||
u = u � Pk u

�k = ||u||
if �k/u0 < ✏, break

qk+1 = u/�k

end
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Krylov Subspace Methods

Krylov subspace methods reduce matrix to Hessenberg (or
tridiagonal) form using only matrix-vector multiplication
For arbitrary starting vector x0, if

Kk =

⇥
x0 Ax0 · · · Ak�1x0

⇤

then
K�1

n AKn = Cn

where Cn is upper Hessenberg (in fact, companion matrix)
To obtain better conditioned basis for span(Kn), compute
QR factorization

QnRn = Kn

so that
QH

n AQn = RnCnR
�1
n ⌘ H

with H upper Hessenberg
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Krylov Subspace Methods

Equating kth columns on each side of equation
AQn = QnH yields recurrence

Aqk = h1kq1 + · · ·+ hkkqk + hk+1,kqk+1

relating qk+1 to preceding vectors q1, . . . , qk

Premultiplying by qHj and using orthonormality,

hjk = qHj Aqk, j = 1, . . . , k

These relationships yield Arnoldi iteration, which produces
unitary matrix Qn and upper Hessenberg matrix Hn

column by column using only matrix-vector multiplication
by A and inner products of vectors
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Krylov Subspace Projections
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R(Kk)

1
hk+1,k

Aqk

qk+1

• Notice that Aqj will be in R(Kk) for all j < k.

• qk+1 ? R(Kk)

• qk+1 ? R(AKk�1) ⇢ R(Kk)



Krylov Subspace and Similarity Transformation 
• Consider the rank k matrix

Kk :=
�
x0 Ax0 A

2
x0 · · · Ak�1

x0

�
,

and associated Krylov subspace Kk := R(Kk).

• Krylov subspace methods work with the orthogonal
vectors qk 2 Kk, k=1, 2,. . . , satisfying QR = Kk.

• The similarity transformation

Q�1AQ = QTAQ = H

with entries hij = q

T
i Aqj is upper Hessenberg.

H =

2

66664

x x x x x
x x x x x

x x x x
x x x

x x

3

77775
, hij = 0 for i > j + 1.

• Proof: If vj 2 span{q1, . . . ,qj} ⌘ lPj�1(A)x ⌘ Kj

then Avj 2 span{Aq1, . . . , Aqj} ⇢ lPj(A)x ⌘ Kj+1.

q

T
i Avj = 0, i > j + 1,

because, for i > j + 1, qi ? Kj+1.
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Arnoldi Iteration

x0 = arbitrary nonzero starting vector
q1 = x0/kx0k2
for k = 1, 2, . . .

uk = Aqk
for j = 1 to k

hjk = qHj uk

uk = uk � hjkqj
end

hk+1,k = kukk2
if hk+1,k = 0 then stop
qk+1 = uk/hk+1,k

end
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" qk+1 = c A qk  - projection 
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Arnoldi Iteration

x0 = arbitrary nonzero starting vector
q1 = x0/kx0k2
for k = 1, 2, . . .

uk = Aqk
for j = 1 to k

hjk = qHj uk

uk = uk � hjkqj
end

hk+1,k = kukk2
if hk+1,k = 0 then stop
qk+1 = uk/hk+1,k

end

Michael T. Heath Scientific Computing 62 / 87

Modified Gram-Schmidt 
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Arnoldi Iteration

x0 = arbitrary nonzero starting vector
q1 = x0/kx0k2
for k = 1, 2, . . .

uk = Aqk
for j = 1 to k

hjk = qHj uk

uk = uk � hjkqj
end

hk+1,k = kukk2
if hk+1,k = 0 then stop
qk+1 = uk/hk+1,k

end
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Modified Gram-Schmidt 
 

        uk = ( I-QQT ) uk 
            = uk -  QQT uk 
 

            = uk -  [h1k q1  h2k q2 … hkk qk ] 
 
Q: There are two projectors in the 
lines above.    Where are they ??  
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Arnoldi Iteration, continued

If
Qk =

⇥
q1 · · · qk

⇤

then
Hk = QH

k AQk

is upper Hessenberg matrix

Eigenvalues of Hk, called Ritz values, are approximate
eigenvalues of A, and Ritz vectors given by Qky, where y
is eigenvector of Hk, are corresponding approximate
eigenvectors of A

Eigenvalues of Hk must be computed by another method,
such as QR iteration, but this is easier problem if k ⌧ n
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Arnoldi Iteration, continued

Arnoldi iteration fairly expensive in work and storage
because each new vector qk must be orthogonalized
against all previous columns of Qk, and all must be stored
for that purpose.

So Arnoldi process usually restarted periodically with
carefully chosen starting vector

Ritz values and vectors produced are often good
approximations to eigenvalues and eigenvectors of A after
relatively few iterations
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A reasonable restart choice:  current approximate eigenvector 
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Lanczos Iteration
Work and storage costs drop dramatically if matrix is
symmetric or Hermitian, since recurrence then has only
three terms and Hk is tridiagonal (so usually denoted Tk)

q0 = 0
�0 = 0

x0 = arbitrary nonzero starting vector
q1 = x0/kx0k2
for k = 1, 2, . . .

uk = Aqk
↵k = qHk uk

uk = uk � �k�1qk�1 � ↵kqk
�k = kukk2
if �k = 0 then stop
qk+1 = uk/�k

end
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Lanczos Iteration, continued

↵k and �k are diagonal and subdiagonal entries of
symmetric tridiagonal matrix Tk

As with Arnoldi, Lanczos iteration does not produce
eigenvalues and eigenvectors directly, but only tridiagonal
matrix Tk, whose eigenvalues and eigenvectors must be
computed by another method to obtain Ritz values and
vectors

If �k = 0, then algorithm appears to break down, but in that
case invariant subspace has already been identified (i.e.,
Ritz values and vectors are already exact at that point)
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Lanczos Iteration, continued

In principle, if Lanczos algorithm were run until k = n,
resulting tridiagonal matrix would be orthogonally similar to
A

In practice, rounding error causes loss of orthogonality,
invalidating this expectation

Problem can be overcome by reorthogonalizing vectors as
needed, but expense can be substantial

Alternatively, can ignore problem, in which case algorithm
still produces good eigenvalue approximations, but multiple
copies of some eigenvalues may be generated
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Krylov Subspace Methods, continued

Great virtue of Arnoldi and Lanczos iterations is their ability
to produce good approximations to extreme eigenvalues
for k ⌧ n

Moreover, they require only one matrix-vector multiplication
by A per step and little auxiliary storage, so are ideally
suited to large sparse matrices

If eigenvalues are needed in middle of spectrum, say near
�, then algorithm can be applied to matrix (A� �I)�1,
assuming it is practical to solve systems of form
(A� �I)x = y
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O(n) operations per iteration 

Typically requires a good preconditioner, M ~ A-¾ I 



Optimality of Lanczos, Case  A is SPD 

• Recall, if A is SPD, then x

TAx > 0 8 x 6= 0.

• If Q is full rank, then T := QTAQ is SPD.

(Qy)T A (Qy) = y

TQTAQy > 0 8 y 6= 0.

• If A is SPD then ||A||2 = �1 (max eigenvalue). Thus,

�1 = max
x 6=0

x

TAx

x

T
x

= max
||x||=1

x

TAx.

• Let Ty = µy. (T is k ⇥ k tridiagonal, k ⌧ n.)

µ1 = max
||y||=1

y

TTy = max
||y||=1

y

TQTAQy � x

TAx 8 x 2 Kk

• Therefore, µ1 is the closest Rayleigh quotient estimate for all x 2 Kk, ||x|| = 1.

• Lanczos is as good as (or much better than) the power method for the same
number of matrix-vector products in A.



Matlab Demo:   n=15 

❑  Lanczos vs Power Iteration  (demo_lanczos.m) 

❑  Lanczos does a reasonable job of converging to extreme eigenvalues. 



❑  Lanczos vs Power Iteration 

❑  Lanczos does a reasonable job of converging to extreme 
eigenvalues. 

Q:  What is 
happening 
here? 

Matlab Demo:   n=15 
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Example: Lanczos Iteration

For 29⇥ 29 symmetric matrix with eigenvalues 1, . . . , 29,
behavior of Lanczos iteration is shown below
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Lanczos: Graph Laplacian Example 

❑  Lanczos is excellent for partitioning large sparse graphs 
❑  Find x2 the eigenvector associated with the 2nd smallest 

eigenvalue of the Graph Laplacian, G 
❑  Gij = -1 if vertex i connected to vertex j,  
❑  Gii = number of connections for vertex I 
❑  Gij = 0 otherwise 

v1 v2 
v3 

v4 
v5 



Lanczos: Graph Laplacian Example 

❑  Order eigenvalues such that:  0 = ¸1 < ¸2 · ! · ¸n 

❑  x1 = [ 1 1 … 1 ]T  is constant eigenvector:   G x1 = 0. 
❑  f := x2 is known as the Fiedler vector. 
❑  Sorting entries of f = (f1 f2 … fn) yields an ordering of the entries in the 

graph where adjacent entries in the sorted list are “near” each other. 
❑  Under most conditions, partitioning this set yields a pair of connected 

subsets with a minimal cut. 

v1 v2 
v3 

v4 
v5 



Lanczos: Graph Laplacian Example 

❑  Since x1 = [ 1 1 … 1 ]T is known can deflate out of G by using 

         G’ := G – x1( x1
Tx1 )-1  x1

T   = G – x1( 1/n) x1
T 

 

 which amounts to subtracting off the mean of the input (or output)  
 after each matrix-vector product. 

 

❑  Often, it suffices to make certain that the initial guess has zero mean. 

❑  For example, take x = [ 1 2 … n ]T, then set xi = xi – x* , i=1,2,…,n, with 

                    x* :=  (1/n)  ∑ xi 

      being the average of the xis 

❑  Advantage of pre-deflation is that smallest (active) eigenvalue is now 
the extreme eigenvalue.   



Graphs can be planar graphs, or not (e.g., 3D mesh, WWW, etc.) 
 



An Cut Example:  HW3 


