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Nonlinear Equations

Given function f , we seek value x for which

f(x) = 0

Solution x is root of equation, or zero of function f

So problem is known as root finding or zero finding

Michael T. Heath Scientific Computing 3 / 55



Nonlinear Equations
Numerical Methods in One Dimension

Methods for Systems of Nonlinear Equations

Nonlinear Equations
Solutions and Sensitivity
Convergence

Nonlinear Equations

Two important cases

Single nonlinear equation in one unknown, where

f : R ! R

Solution is scalar x for which f(x) = 0

System of n coupled nonlinear equations in n unknowns,
where

f : Rn ! Rn

Solution is vector x for which all components of f are zero
simultaneously, f(x) = 0

Michael T. Heath Scientific Computing 4 / 55



Nonlinear Equations
Numerical Methods in One Dimension

Methods for Systems of Nonlinear Equations

Nonlinear Equations
Solutions and Sensitivity
Convergence

Examples: Nonlinear Equations

Example of nonlinear equation in one dimension

x

2 � 4 sin(x) = 0

for which x = 1.9 is one approximate solution

Example of system of nonlinear equations in two
dimensions

x

2
1 � x2 + 0.25 = 0

�x1 + x

2
2 + 0.25 = 0

for which x =

⇥
0.5 0.5

⇤T is solution vector
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Existence and Uniqueness

Existence and uniqueness of solutions are more
complicated for nonlinear equations than for linear
equations

For function f : R ! R, bracket is interval [a, b] for which
sign of f differs at endpoints

If f is continuous and sign(f(a)) 6= sign(f(b)), then
Intermediate Value Theorem implies there is x

⇤ 2 [a, b]

such that f(x⇤) = 0

There is no simple analog for n dimensions
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Examples: One Dimension

Nonlinear equations can have any number of solutions

exp(x) + 1 = 0 has no solution

exp(�x)� x = 0 has one solution

x

2 � 4 sin(x) = 0 has two solutions

x

3
+ 6x

2
+ 11x� 6 = 0 has three solutions

sin(x) = 0 has infinitely many solutions
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Example: Systems in Two Dimensions
x

2
1 � x2 + � = 0

�x1 + x

2
2 + � = 0
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Example: Systems in Two Dimensions
x

2
1 � x2 + � = 0

�x1 + x

2
2 + � = 0
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Multiplicity

If f(x⇤) = f

0
(x

⇤
) = f

00
(x

⇤
) = · · · = f

(m�1)
(x

⇤
) = 0 but

f

(m)
(x

⇤
) 6= 0 (i.e., mth derivative is lowest derivative of f

that does not vanish at x⇤), then root x⇤ has multiplicity m

If m = 1 (f(x⇤) = 0 and f

0
(x

⇤
) 6= 0), then x

⇤ is simple root
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f(x*)=0, f’(x*)=0 
   multiplicity=2 

f(x*)=0, f’(x*)=0 
f”(x*)=0 
  multiplicity=3 
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Sensitivity and Conditioning

Conditioning of root finding problem is opposite to that for
evaluating function

Absolute condition number of root finding problem for root
x

⇤ of f : R ! R is 1/|f 0
(x

⇤
)|

Root is ill-conditioned if tangent line is nearly horizontal

In particular, multiple root (m > 1) is ill-conditioned

Absolute condition number of root finding problem for root
x⇤ of f : Rn ! Rn is kJ�1

f (x⇤
)k, where Jf is Jacobian

matrix of f ,
{Jf (x)}ij = @fi(x)/@xj

Root is ill-conditioned if Jacobian matrix is nearly singular
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Sensitivity and Conditioning
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f is near zero for large range of x in 
neighborhood of x*. 
Difficult to find x* to significant 
precision. 
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Sensitivity and Conditioning

What do we mean by approximate solution ˆx to nonlinear
system,

kf(ˆx)k ⇡ 0 or kˆx� x⇤k ⇡ 0 ?

First corresponds to “small residual,” second measures
closeness to (usually unknown) true solution x⇤

Solution criteria are not necessarily “small” simultaneously

Small residual implies accurate solution only if problem is
well-conditioned
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Convergence Rate

For general iterative methods, define error at iteration k by

ek = xk � x⇤

where xk is approximate solution and x⇤ is true solution

For methods that maintain interval known to contain
solution, rather than specific approximate value for
solution, take error to be length of interval containing
solution

Sequence converges with rate r if

lim

k!1

kek+1k
kekkr = C

for some finite nonzero constant C
Michael T. Heath Scientific Computing 13 / 55

Important 
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Convergence Rate, continued

Some particular cases of interest

r = 1: linear (C < 1)

r > 1: superlinear

r = 2: quadratic

Convergence Digits gained
rate per iteration
linear constant
superlinear increasing
quadratic double
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Interval Bisection Method

Bisection method begins with initial bracket and repeatedly
halves its length until solution has been isolated as accurately
as desired

while ((b� a) > tol) do

m = a+ (b� a)/2

if sign(f(a)) = sign(f(m)) then

a = m

else

b = m

end

end

< interactive example >
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FYI: This formulation less 
sensitive to round-off 
than m = (a+b)/2 
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Example: Bisection Method
f(x) = x

2 � 4 sin(x) = 0

a f(a) b f(b)

1.000000 �2.365884 3.000000 8.435520

1.000000 �2.365884 2.000000 0.362810

1.500000 �1.739980 2.000000 0.362810

1.750000 �0.873444 2.000000 0.362810

1.875000 �0.300718 2.000000 0.362810

1.875000 �0.300718 1.937500 0.019849

1.906250 �0.143255 1.937500 0.019849

1.921875 �0.062406 1.937500 0.019849

1.929688 �0.021454 1.937500 0.019849

1.933594 �0.000846 1.937500 0.019849

1.933594 �0.000846 1.935547 0.009491

1.933594 �0.000846 1.934570 0.004320

1.933594 �0.000846 1.934082 0.001736

1.933594 �0.000846 1.933838 0.000445
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Bisection Method, continued
Bisection method makes no use of magnitudes of function
values, only their signs
Bisection is certain to converge, but does so slowly
At each iteration, length of interval containing solution
reduced by half, convergence rate is linear, with r = 1 and
C = 0.5

One bit of accuracy is gained in approximate solution for
each iteration of bisection
Given starting interval [a, b], length of interval after k
iterations is (b� a)/2

k, so achieving error tolerance of tol
requires ⇠

log2

✓
b� a

tol

◆⇡

iterations, regardless of function f involved
Michael T. Heath Scientific Computing 17 / 55
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Fixed-Point Problems

Fixed point of given function g : R ! R is value x such that

x = g(x)

Many iterative methods for solving nonlinear equations use
fixed-point iteration scheme of form

xk+1 = g(xk)

where fixed points for g are solutions for f(x) = 0

Also called functional iteration, since function g is applied
repeatedly to initial starting value x0

For given equation f(x) = 0, there may be many equivalent
fixed-point problems x = g(x) with different choices for g
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Example: Fixed-Point Problems

If f(x) = x

2 � x� 2, then fixed points of each of functions

g(x) = x

2 � 2

g(x) =

p
x+ 2

g(x) = 1 + 2/x

g(x) =

x

2
+ 2

2x� 1

are solutions to equation f(x) = 0

Michael T. Heath Scientific Computing 19 / 55

f(x) 

That is, when g(x*) = x*, then f(x*) = 0. 
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g(x) 

That is, when g(x*) = x*, then f(x*) = 0. 
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Example: Fixed-Point Iteration
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Goal:  x* = g(x*) ,   xk+1 = g(xk ),   xk  ! x*    
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Goal:   x* = g(x*) ,   xk+1 = g(xk ),   xk  ! x*    

x* = g(x*) 

x* 
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Convergence of Fixed-Point Iteration 

❑ Matlab examples: 

❑  fixpt1.m 

❑  fixpt.m 



fixpt.m 

fixpt(1.99,1), 
divergent 

fixpt(1.8,3), 
convergent 
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Convergence of Fixed-Point Iteration

If x⇤ = g(x

⇤
) and |g0(x⇤)| < 1, then there is interval

containing x

⇤ such that iteration

xk+1 = g(xk)

converges to x

⇤ if started within that interval

If |g0(x⇤)| > 1, then iterative scheme diverges

Asymptotic convergence rate of fixed-point iteration is
usually linear, with constant C = |g0(x⇤)|
But if g0(x⇤) = 0, then convergence rate is at least
quadratic

< interactive example >
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Note:  g’(x*) = 0 ! rapid convergence (good) 

          f’(x*) = 0 ! ill-conditioned, slow convergence (bad) 



Convergence of Fixed-Point Iteration 

❑  Q:  What is the iteration history for g(x)=5 ? 
 

 



Convergence of Fixed-Point Iteration 

❑  Q:  Why does g’(x*) matter, but not any of the curvature information? 
 (Unless of course if g’(x*)=0.) 

 

❑  With linear convergence, most of the time is spent evaluating g(x) 
near the root. 

❑  Fast methods exploit the fact that g (or f) appear linear near the 
point of interest.   This is the essence of Taylor’s Thm. 
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Accelerating Linearly Convergent Sequences

• Often, we don’t have an equation of the form f(x) = 0.

• Instead, we have a sequence xk that is approaching a value x

⇤ .

• Linear convergence can be accelerated via many methods.

• One historically important one is Aitken’s �2
Method:

yk+2 := xk+2 � �2�2

�2 � �1
,

with

�1 := xk+1 � xk

�2 := xk+2 � xk+1.

• For a linearly-convergent sequence xk, the corresponding yks will
generally be closer to x

⇤. (One must be careful about round-o↵.)



• This improved convergence suggests the following modified fixed point
iteration for the solution x

⇤ = g(x⇤):

Fixed Point Iteration

• Start with x0.

for k = 0, 1, . . . ,

xk+1 = g(xk)

end

Accelerated Iteration

• Start with x0.

for k = 0, 2, 4, . . . ,

xk+1 = g(xk)

xk+2 = g(xk+1)

�2 = xk+2 � xk+1, �1 = xk+1 � xk

xk+2 = xk+2 ��2
2/(�2 ��1)

end

• matlab code:

x0=0;

for k=1:5;

x1=g(x0);

x2=g(x1);

d1=x1-x0; d2=x2-x1;

x0=x2 - (d2*d2)/(d2-d1);

end;



Matlab demo: aitken.m 



Aitken’s ¢2 Method Converges for a Divergent Sequence! 



Methods for Root Finding:  f(x*) = 0 

❑  We return to the 1D root-finding problem, f(x*) = 0. 

❑  We start with the most famous fixed-point scheme, Newton’s method. 

❑  If x* is a simple root, Newton’s method converges quadratically. 

❑  If x* is a root with multiplicity m > 1, the convergence is linear with 
contraction rate   C = [ 1 – 1/m ]. 
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Newton’s Method, continued

Newton’s method approximates nonlinear function f near xk by
tangent line at f(xk)
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fk := f(xk) 
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Newton’s Method

Truncated Taylor series

f(x+ h) ⇡ f(x) + f

0
(x)h

is linear function of h approximating f near x

Replace nonlinear function f by this linear function, whose
zero is h = �f(x)/f

0
(x)

Zeros of original function and linear approximation are not
identical, so repeat process, giving Newton’s method

xk+1 = xk � f(xk)

f

0
(xk)

Michael T. Heath Scientific Computing 24 / 55
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Example: Newton’s Method
Use Newton’s method to find root of

f(x) = x

2 � 4 sin(x) = 0

Derivative is
f

0
(x) = 2x� 4 cos(x)

so iteration scheme is

xk+1 = xk � x

2
k � 4 sin(xk)

2xk � 4 cos(xk)

Taking x0 = 3 as starting value, we obtain
x f(x) f

0
(x) h

3.000000 8.435520 9.959970 �0.846942

2.153058 1.294772 6.505771 �0.199019

1.954039 0.108438 5.403795 �0.020067

1.933972 0.001152 5.288919 �0.000218

1.933754 0.000000 5.287670 0.000000
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newton.m demo 



Nonlinear Equations
Numerical Methods in One Dimension

Methods for Systems of Nonlinear Equations

Bisection Method
Fixed-Point Iteration and Newton’s Method
Additional Methods

Convergence of Newton’s Method

Newton’s method transforms nonlinear equation f(x) = 0

into fixed-point problem x = g(x), where

g(x) = x� f(x)/f

0
(x)

and hence
g

0
(x) = f(x)f

00
(x)/(f

0
(x))

2

If x⇤ is simple root (i.e., f(x⇤) = 0 and f

0
(x

⇤
) 6= 0), then

g

0
(x

⇤
) = 0

Convergence rate of Newton’s method for simple root is
therefore quadratic (r = 2)

But iterations must start close enough to root to converge

< interactive example >
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Question 

❑  Newton’s method is: 

                xk  =  xk-1 – f(xk-1)  /   f’ (xk-1) 
 
❑  Will Newton’s method converge if you make a mistake in 

evaluating f’(xk-1) ?? 
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Newton’s Method, continued

For multiple root, convergence rate of Newton’s method is only
linear, with constant C = 1� (1/m), where m is multiplicity

k f(x) = x

2 � 1 f(x) = x

2 � 2x+ 1

0 2.0 2.0

1 1.25 1.5

2 1.025 1.25

3 1.0003 1.125

4 1.00000005 1.0625

5 1.0 1.03125
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Examples of Newton’s Method 

❑    

❑  Method 1 

❑  Method 2 

❑     
 

❑  Interesting questions: 
❑  Convergent? 
❑  At what rate? 
❑  For what initial guess?    (Use range reduction to get initial guess.) 



A Note on Newton’s Method for Intrinsics
Paul F. Fischer

Computer Science
Mechanical Science & Engineering

University of Illinois, Champaign-Urbana

Newton’s method is often used for intrinsic function evaluation. The primary considerations in
developing a scheme are

• The rate of convergence.

• Ensuring the initial guess is in the radius of convergence.

Here, we consider three applications of Newton’s method for some basic function evaluations. To
simplify the exposition, we assume throughout that A > 0.

1 Newton for
p
A.

A common usage for Newton iteration is in computation of square roots. Suppose we want to find
x

⇤ =
p
A, which can be expressed as the root-finding problem:

f(x) = x

2 �A. (1)

Applying Newton’s method to generate a fixed point scheme x

k+1 = g(x
k

), we have

g(x) = x� f

f

0 = x� x

2 �A

2x
=

1

2

✓
x+

A

x

◆
.

This is a very well-known scheme and is globally convergent. Assuming A > 0, we establish the
latter claim as follows. Note that if x0 < x

⇤ then x1 > x

⇤. Moreover,

g

0(x) =
1

2

✓
1� A

x

2

◆

is between 0 and 1/2 for all x > x

⇤, so each iteration yields a contraction in the error for any
x

k

> x

⇤. Quadratic convergence results because g

0(x⇤) = 0.

A good initial guess x0 can be obtained through range reduction, in which one maps the problem
to a suitable range over which the error is known. Range reduction for the square-root problem
begins by exploiting the binary representation of A,

A = 1.bbb . . . ⇥ 2k

= Bb.bbb . . . ⇥ 2l.

In the second expression, the mantissa is normalized (via a shift) onto the interval [1, 4) so that the
exponent l is even. That is, if k is even, take B=0 and l = k. If k is odd, take B = 1 and l = k� 1.
The exponent of x⇤ is thus l/2, which is e↵ected as a bit shift to the right, with no information
loss. The mantissa of x⇤ is the square-root of the normalized mantissa and will be on [1, 2), such
that the result will be normalized.
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Newton’s method is often used for intrinsic function evaluation. The primary considerations in
developing a scheme are

• The rate of convergence.
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Figure 1: Plot of x =
p
A, y1 = 2/3 +A/3, and y2 = 3/4 +A/3.

There are many ways to generate a good initial guess for the mantissa. Without loss of generality,
assume A 2 [1, 4). Figure 1 shows x⇤ =

p
A along with two lines, y1(A) = (2 + A)/3 and

y2(A) = 3/4 + A/3, which bound x

⇤ on the interval [1, 4]. The gap between y1 and y2 is 1/12.
Taking the average of these two lines, let

x0 =
17

24
+

A

3
. (2)

We know that |x0 � x

⇤|  1/24 ⇡ .04 and, with quadratic convergence, we can anticipate about 4
iterations to reduce the error to below ✏

M

.

2 Newton for 1/A.

While most machines are equiped with one or more fused multiply-add (FMA) units capable of
producing (in pipelined fashion) one result per clock cycle, it is not uncommon for division to take
multiple clock cycles because it generally requires some type of iteration. A classic example is the
Intel’s RISC processor, the i860, which required about 50 clock cycles to compute c = a/b. The
respective assembly code for 32-bit and 64-bit division is shown in Figs. 2 and 3.

The scheme is based on Newton’s method applied to

f(x) =
1

Ax

� 1

to arrive at the fixed-point iteration x

k+1 = g(x
k

), with

g(x) = 2x�Ax

2 = x(2�Ax).

2
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Figure 3: Assembly code for 64-bit floating-point divide on the Intel i860.

will guarantee convergence. If

A = 1.bbb . . . ⇥ 2k,

then

1

2
⇥ 2�k  A

�1 =
1

1.bbb . . .
⇥ 2�k  1⇥ 2�k

.

We can take as an initial guess

x0 =
3

4
⇥ 2�k

,
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Figure 2: Assembly code for 32-bit floating-point divide on the Intel i860.

We note that g(1/A) = 1/A and g

0(1/A) = 2� 2A(1/A)=0, so the scheme has x⇤ = 1/A as a fixed
point and is quadratically convergent.

It is important to understand the radius of convergence for this method. That is, for what range
of x

k

will |g0(x)| < 1? It’s usually easiest to answer the question with respect to x

⇤. So, one has

g

0(x) = 2� 2Ax = 2� 2
x

x

⇤ .

Inserting this into the bracketing range, �1 < g

0
< 1, we find

1

2
<

x0

x

⇤ <

3

2

3
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Methods for Root Finding:  f(x*) = 0 

❑  We return to the 1D root-finding problem, f(x*) = 0. 

❑  We next consider the secant method, which is similar to Newton’s 
method but does not require knowing f’(x). 

❑  If x* is a simple root, the secant method has superlinear 
convergence (but not quite quadratic). 
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Secant Method

For each iteration, Newton’s method requires evaluation of
both function and its derivative, which may be inconvenient
or expensive

In secant method, derivative is approximated by finite
difference using two successive iterates, so iteration
becomes

xk+1 = xk � f(xk)
xk � xk�1

f(xk)� f(xk�1)

Convergence rate of secant method is normally
superlinear, with r ⇡ 1.618

Michael T. Heath Scientific Computing 29 / 55

¼ 1 / f’(x) 
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Secant Method, continued

Secant method approximates nonlinear function f by secant
line through previous two iterates

< interactive example >
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Convergence of Secant Method 

❑  Convergence rate is  r ~ 1.62,  meaning 

  | ek+1 | ~ C | ek |r             (as kà 1 ) 

❑  Convergence behavior is   | ek+1 | ~ A | ek | | ek-1| 

❑  See secant.pdf on relate for notes. 
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Example: Secant Method

Use secant method to find root of

f(x) = x

2 � 4 sin(x) = 0

Taking x0 = 1 and x1 = 3 as starting guesses, we obtain

x f(x) h

1.000000 �2.365884

3.000000 8.435520 �1.561930

1.438070 �1.896774 0.286735

1.724805 �0.977706 0.305029

2.029833 0.534305 �0.107789

1.922044 �0.061523 0.011130

1.933174 �0.003064 0.000583

1.933757 0.000019 �0.000004

1.933754 0.000000 0.000000
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Higher-Degree Interpolation

Secant method uses linear interpolation to approximate
function whose zero is sought

Higher convergence rate can be obtained by using
higher-degree polynomial interpolation

For example, quadratic interpolation (Muller’s method) has
superlinear convergence rate with r ⇡ 1.839

Unfortunately, using higher degree polynomial also has
disadvantages

interpolating polynomial may not have real roots
roots may not be easy to compute
choice of root to use as next iterate may not be obvious
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Inverse Interpolation

Good alternative is inverse interpolation, where xk are
interpolated as function of yk = f(xk) by polynomial p(y),
so next approximate solution is p(0)

Most commonly used for root finding is inverse quadratic
interpolation

Michael T. Heath Scientific Computing 33 / 55

This method, however, can 
also have difficulty if not 
close enough to root. 
 
Convergence rate is 

 r ~ 1.8 
as with Mueller’s method. 
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Inverse Quadratic Interpolation

Given approximate solution values a, b, c, with function
values fa, fb, fc, next approximate solution found by fitting
quadratic polynomial to a, b, c as function of fa, fb, fc, then
evaluating polynomial at 0

Based on nontrivial derivation using Lagrange
interpolation, we compute

u = fb/fc, v = fb/fa, w = fa/fc

p = v(w(u� w)(c� b)� (1� u)(b� a))

q = (w � 1)(u� 1)(v � 1)

then new approximate solution is b+ p/q

Convergence rate is normally r ⇡ 1.839

< interactive example >
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Example: Inverse Quadratic Interpolation

Use inverse quadratic interpolation to find root of

f(x) = x

2 � 4 sin(x) = 0

Taking x = 1, 2, and 3 as starting values, we obtain
x f(x) h

1.000000 �2.365884

2.000000 0.362810

3.000000 8.435520

1.886318 �0.244343 �0.113682

1.939558 0.030786 0.053240

1.933742 �0.000060 �0.005815

1.933754 0.000000 0.000011

1.933754 0.000000 0.000000
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Linear Fractional Interpolation

Interpolation using rational fraction of form

�(x) =

x� u

vx� w

is especially useful for finding zeros of functions having
horizontal or vertical asymptotes
� has zero at x = u, vertical asymptote at x = w/v, and
horizontal asymptote at y = 1/v

Given approximate solution values a, b, c, with function
values fa, fb, fc, next approximate solution is c+ h, where

h =

(a� c)(b� c)(fa � fb)fc

(a� c)(fc � fb)fa � (b� c)(fc � fa)fb

Convergence rate is normally r ⇡ 1.839, same as for
quadratic interpolation (inverse or regular)
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Example: Linear Fractional Interpolation

Use linear fractional interpolation to find root of

f(x) = x

2 � 4 sin(x) = 0

Taking x = 1, 2, and 3 as starting values, we obtain
x f(x) h

1.000000 �2.365884

2.000000 0.362810

3.000000 8.435520

1.906953 �0.139647 �1.093047

1.933351 �0.002131 0.026398

1.933756 0.000013 �0.000406

1.933754 0.000000 �0.000003

< interactive example >
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Safeguarded Methods

Rapidly convergent methods for solving nonlinear
equations may not converge unless started close to
solution, but safe methods are slow

Hybrid methods combine features of both types of
methods to achieve both speed and reliability

Use rapidly convergent method, but maintain bracket
around solution

If next approximate solution given by fast method falls
outside bracketing interval, perform one iteration of safe
method, such as bisection
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Safeguarded Methods, continued

Fast method can then be tried again on smaller interval
with greater chance of success

Ultimately, convergence rate of fast method should prevail

Hybrid approach seldom does worse than safe method,
and usually does much better

Popular combination is bisection and inverse quadratic
interpolation, for which no derivatives required
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Zeros of Polynomials

For polynomial p(x) of degree n, one may want to find all n
of its zeros, which may be complex even if coefficients are
real

Several approaches are available
Use root-finding method such as Newton’s or Muller’s
method to find one root, deflate it out, and repeat
Form companion matrix of polynomial and use eigenvalue
routine to compute all its eigenvalues
Use method designed specifically for finding all roots of
polynomial, such as Jenkins-Traub

Michael T. Heath Scientific Computing 40 / 55

Note that standard polynomial forms are not very stable: 
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Systems of Nonlinear Equations

Solving systems of nonlinear equations is much more difficult
than scalar case because

Wider variety of behavior is possible, so determining
existence and number of solutions or good starting guess
is much more complex

There is no simple way, in general, to guarantee
convergence to desired solution or to bracket solution to
produce absolutely safe method

Computational overhead increases rapidly with dimension
of problem

Michael T. Heath Scientific Computing 41 / 55
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Fixed-Point Iteration

Fixed-point problem for g : Rn ! Rn is to find vector x such
that

x = g(x)

Corresponding fixed-point iteration is

xk+1 = g(xk)

If ⇢(G(x⇤
)) < 1, where ⇢ is spectral radius and G(x) is

Jacobian matrix of g evaluated at x, then fixed-point
iteration converges if started close enough to solution

Convergence rate is normally linear, with constant C given
by spectral radius ⇢(G(x⇤

))

If G(x⇤
) = O, then convergence rate is at least quadratic

Michael T. Heath Scientific Computing 42 / 55



Nonlinear Equations
Numerical Methods in One Dimension

Methods for Systems of Nonlinear Equations

Fixed-Point Iteration
Newton’s Method
Secant Updating Methods

Newton’s Method

In n dimensions, Newton’s method has form

xk+1 = xk � J(xk)
�1f(xk)

where J(x) is Jacobian matrix of f ,

{J(x)}ij = @fi(x)

@xj

In practice, we do not explicitly invert J(xk), but instead
solve linear system

J(xk)sk = �f(xk)

for Newton step sk, then take as next iterate

xk+1 = xk + sk
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Notes for Newton’s Method in n Dimensions 
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Example: Newton’s Method

Use Newton’s method to solve nonlinear system

f(x) =


x1 + 2x2 � 2

x

2
1 + 4x

2
2 � 4

�
= 0

Jacobian matrix is Jf (x) =


1 2

2x1 8x2

�

If we take x0 =
⇥
1 2

⇤T , then

f(x0) =


3

13

�
, Jf (x0) =


1 2

2 16

�

Solving system

1 2

2 16

�
s0 =

 �3

�13

�
gives s0 =

�1.83

�0.58

�
,

so x1 = x0 + s0 =
⇥�0.83 1.42

⇤T
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Example, continued
Evaluating at new point,

f(x1) =


0

4.72

�
, Jf (x1) =


1 2

�1.67 11.3

�

Solving system


1 2

�1.67 11.3

�
s1 =


0

�4.72

�
gives

s1 =
⇥
0.64 �0.32

⇤T , so x2 = x1 + s1 =
⇥�0.19 1.10

⇤T

Evaluating at new point,

f(x2) =


0

0.83

�
, Jf (x2) =


1 2

�0.38 8.76

�

Iterations eventually convergence to solution x

⇤
=

⇥
0 1

⇤T

< interactive example >
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Convergence of Newton’s Method

Differentiating corresponding fixed-point operator

g(x) = x� J(x)�1f(x)

and evaluating at solution x⇤ gives

G(x⇤
) = I � (J(x⇤

)

�1J(x⇤
) +

nX

i=1

fi(x
⇤
)Hi(x

⇤
)) = O

where Hi(x) is component matrix of derivative of J(x)�1

Convergence rate of Newton’s method for nonlinear
systems is normally quadratic, provided Jacobian matrix
J(x⇤

) is nonsingular

But it must be started close enough to solution to converge
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Cost of Newton’s Method

Cost per iteration of Newton’s method for dense problem in n

dimensions is substantial

Computing Jacobian matrix costs n

2 scalar function
evaluations

Solving linear system costs O(n

3
) operations
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Secant Updating Methods

Secant updating methods reduce cost by
Using function values at successive iterates to build
approximate Jacobian and avoiding explicit evaluation of
derivatives
Updating factorization of approximate Jacobian rather than
refactoring it each iteration

Most secant updating methods have superlinear but not
quadratic convergence rate

Secant updating methods often cost less overall than
Newton’s method because of lower cost per iteration
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Broyden’s Method

Broyden’s method is typical secant updating method

Beginning with initial guess x0 for solution and initial
approximate Jacobian B0, following steps are repeated
until convergence

x0 = initial guess
B0 = initial Jacobian approximation
for k = 0, 1, 2, . . .

Solve Bk sk = �f(xk) for sk
xk+1 = xk + sk
yk = f(xk+1)� f(xk)

Bk+1 = Bk + ((yk �Bksk)sTk )/(s
T
k sk)

end
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Rank-One Update 



Nonlinear Equations
Numerical Methods in One Dimension

Methods for Systems of Nonlinear Equations

Fixed-Point Iteration
Newton’s Method
Secant Updating Methods

Broyden’s Method, continued

Motivation for formula for Bk+1 is to make least change to
Bk subject to satisfying secant equation

Bk+1(xk+1 � xk) = f(xk+1)� f(xk)

In practice, factorization of Bk is updated instead of
updating Bk directly, so total cost per iteration is only O(n

2
)
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Broyden – Choice of Bk+1 
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Example: Broyden’s Method

Use Broyden’s method to solve nonlinear system

f(x) =


x1 + 2x2 � 2

x

2
1 + 4x

2
2 � 4

�
= 0

If x0 =
⇥
1 2

⇤T , then f(x0) =
⇥
3 13

⇤T , and we choose

B0 = Jf (x0) =


1 2

2 16

�

Solving system

1 2

2 16

�
s0 =

 �3

�13

�

gives s0 =

�1.83

�0.58

�
, so x1 = x0 + s0 =

�0.83

1.42

�
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Example, continued

Evaluating at new point x1 gives f(x1) =


0

4.72

�
, so

y0 = f(x1)� f(x0) =

 �3

�8.28

�

From updating formula, we obtain

B1 =


1 2

2 16

�
+


0 0

�2.34 �0.74

�
=


1 2

�0.34 15.3

�

Solving system


1 2

�0.34 15.3

�
s1 =


0

�4.72

�

gives s1 =


0.59

�0.30

�
, so x2 = x1 + s1 =

�0.24

1.120

�
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Example, continued

Evaluating at new point x2 gives f(x2) =


0

1.08

�
, so

y1 = f(x2)� f(x1) =


0

�3.64

�

From updating formula, we obtain

B2 =


1 2

�0.34 15.3

�
+


0 0

1.46 �0.73

�
=


1 2

1.12 14.5

�

Iterations continue until convergence to solution x⇤
=


0

1

�

< interactive example >
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broyden4.m 

•  Notice the ekek-1 convergence 
behavior. 



broyden_bratu.m 
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Robust Newton-Like Methods

Newton’s method and its variants may fail to converge
when started far from solution

Safeguards can enlarge region of convergence of
Newton-like methods

Simplest precaution is damped Newton method, in which
new iterate is

xk+1 = xk + ↵ksk

where sk is Newton (or Newton-like) step and ↵k is scalar
parameter chosen to ensure progress toward solution

Parameter ↵k reduces Newton step when it is too large,
but ↵k = 1 suffices near solution and still yields fast
asymptotic convergence rate

Michael T. Heath Scientific Computing 54 / 55



Higher-Dimensional Examples 

❑  Bratu Problem – a nonlinear ODE or PDE 

❑  Jacobi-Free Newton-Krylov methods   



The Bratu Problem: Newton in n Dimensions
Paul F. Fischer

Computer Science
Mechanical Science & Engineering

University of Illinois, Champaign-Urbana

1 Newton’s Method in Higher Space Dimensions

We are interested in solving a system of nonlinear equations in n dimensions, f(x) = 0. As with
the scalar (n=1) case, we recast the problem as a fixed point iteration using Newton’s method

x

k+1 = x

k

� J�1
f(x

k

) (1)

= x

k

+ s

k

where the update step s
k

satisfies Js
k

= �f

k

and

J
ij

:= =
@f

i

@x
j

����
x=xk

(2)

is the Jacobian matrix associated with the f(x) at x = x

k

. In some cases we use a damped Newton
update of the form

x

k+1 = x

k

+ ↵s
k

with ↵ < 1 chosen to guarantee that ||f
k+1|| < ||f

k

||.

A major di↵erence between the scalar and vector case is that (1) requires the solution of an n⇥ n
system for each iteration. Given that the factor (LU decomposition of J) cost nominally scales as
O(n3), a great deal of e↵ort is expended to develop algorithms that can reduce this overhead. We
explore one of these, Jacobi-Free Newton-Krylov (JFNK) methods at the end of this discussion.
Presently, we carry on with the notion that we can solve systems in J , ever mindful that it typically
represents the leading-order overhead in our method.



2 The Bratu Example

The text has a couple of nonlinear system examples for the case n=2. Here, we consider a larger
problem that is motivated by (but not exactly like) the reaction-di↵usion problem. In the following,
we seek an unknown function u(x) (where x 2 [0, 1] is a spatial coordinate) that satisfies the steady-
state heat (di↵usion) equation

�d2u

dx2
= q, u(0) = u(1) = 0, (3)

where q(x) represents the heat source. For the Bratu problem, we define

q = �eu(x),

where � is a parameter.

Equation (3) is a ordinary di↵erential equation (ODE) and in particular it is a nonlinear two-point
boundary value problem with boundary conditions prescribed as above. To turn this continous
problem into a system of nonlinear equations we first discretize the second derivate term in (3)
using a finite di↵erence appoximation. Through application of Taylor series at points x

j

:= jh,
j = 1, . . . , n, with grid spacing h = 1/(n+ 1). we derive

�u
j�1 � 2u

j

� u
j+1

h2
= �d2u

dx2

����
j

+O(h2) = �euj +O(h2). (4)

If we neglect the O(h2) error term then the system is solvable we can anticipate that our solution
u
j

will approximate u(x
j

) to order h2.



Subtracting the right-hand side from both sides of (4) and changing the sign, we arrive at the
n-dimensional root-finding problem f(u) = 0,

f
j

=
u
j�1 � 2u

j

� u
j+1

h2
+ �euj = 0, j = 1, . . . , n (5)

To apply (1), we need the Jacobian (2), which is given by the tridiagonal matrix

J =
1

h2

0

BBBBBBBBB@

a1 b

b a2 b

b
. . .

. . .

. . .
. . . b

b a
n

1

CCCCCCCCCA

, (6)

with b = 1 and a
j

= �2 + h2�euj . Note that, as is often the case with systems arising from
di↵erential equations, J is sparse. That is, it has a fixed number of nonzeros per row, independent
of n and thus has O(n) nonzeros. Moreover, because this system is tridiagonal, the factor cost is
only O(n), which is of the same order as the other update steps in the algorithm. (In higher space
dimensions, the factor costs is O(n�) with � > 1 and direct factorization loses favor in comparison
to iterative JFNK methods.)



We illustrate the result for n = 80 and � = 1. Using (1), and u0 = 0, we have the following results
for the norms of the step size and residual,

k || s_k || || f_k ||

1 9.141106002022624e-01 8.944271909999159e+00

2 6.555298143445134e-03 5.803485294158030e-02

3 3.746387054601207e-07 3.363605689013008e-06

4 1.553772829606369e-15 1.007219709041583e-12

5 1.184226711286128e-15 1.430323637721320e-12

6 1.746857971735465e-16 1.074544804307374e-12

from which see that we are converging to a fixed point (||s
k

|| �! 0) quadratically, as is typical
when Newton’s method is working. In addition, we see that ||f

k

|| is not going to ✏
M

, which might
be expected given that the condition number of J is about 4⇥ 103.

Figure 1: Solution of the Bratu Problem for � = 1.

3 Refinements of the Algorithm

It turns out that for some values of � the Bratu problem has two solutions, whereas above a critical
value there are no solutions. We discuss a bit of the behavior for � on the interval [0,�

c

], where
�
c

⇡ 3.51355. In Fig. 2, we plot max
x

|u(x)| as a function of � on the lower branch of solutions.
There is another branch (not shown) which sits above this one. The existance of this branch is
indicated by the fact that the solution is turning as � �! �

c

. The path that is shown here was
found by monitoring convergence of Newton’s method for a sequence �

l+1 = �
l

+ ��, and reducing
�� whenever Newton’s method required more than 20 iterations. The work was reduced by using
the solution at �

l

as the starting point for � = �
l+1. Finding the upper branch is beyond the scope

of this discussion. We mention, however, that a commonly used approach that has proven quite
successful is pseudo-arclength continuation, developed by H.B. Keller and coworkers. With this
approach, � is taken as an additional unknown and a new parameter, s, the arclength of the path,
is introduced as an auxiliary parameter (which will not be multivalued).1

1
See, for example, Sec. 4.5 in http://www.math.tifr.res.in/⇠publ/ln/tifr79.pdf



The corresponding source code is

n=80; sigma = 1;

h=1./(n+1); b = ones(n,1); x=1:n; x=h*x’; h2i = 1./(h*h);

a=-2*b; A = h2i*spdiags([b a b],-1:1, n,n);

c=-2*b + sigma*h*h*exp(x); J = h2i*spdiags([b c b],-1:1, n,n);

u=b*0;

for iter=1:31;

f=A*u + sigma*exp(u);

c=-2*b + sigma*h*h*exp(u);

J = h2i*spdiags([b c b],-1:1, n,n); % J is sparse

s = -J\f;

u = u+s;

ns = norm(s); nf = norm(f); [ns nf]

end;

plot(x,u,’r-’,x,0*x,’k-’); hold on

The solution u(x) is not terribly interesting, but we plot it for completeness in Fig. 1.
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approach, � is taken as an additional unknown and a new parameter, s, the arclength of the path,
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1
See, for example, Sec. 4.5 in http://www.math.tifr.res.in/⇠publ/ln/tifr79.pdf

Figure 2: Lower branch of Bratu solutions vs �.

4 JFNK: Reducing Factorization Costs

For large sparse Jacobians, the solution of

Js
k

= �f

k

is best e↵ected with iterative methods such as conjugate Gradients (if J is SPD, which is rare) or
GMRES.

Iterative methods for Ax = b simply require repeated matrix-vector product evaluation of the form

p = Aw. (7)

For Newton iteration in higher space dimensions where A = J this apparently requires forming the
Jacobian,

J
ij

:= =
@f

i

@x
j

����
x=xk

,

which may be very complex for a large nonlinear system arising from a partial di↵erential equation.
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Fortunately, careful inspection of (7) reveals that we do not need to produce A (=: J). We only
need to produce w. This observation leads to the idea of developing a Jacobi-free method that does
precisely that.

Consider a Taylor series about x
k

in terms of x
k

+ ✏s. We can write

f(x
k

+ ✏s) = f(x
k

) + ✏J(x
k

)s + O(✏2).

Neglecting the O(✏2) term, we solve for J(x
k

)s =: Js,

Js ⇡ f(x
k

+ ✏s)� f(x
k

)

✏
, (8)

which is a finite di↵erence approximation to Js. As we know from Chapter 1, we can expect this
approximation to be accurate to only ⇡ p

✏
M

and we should take ✏ no smaller than ⇡ p
✏
M

. In
general, one needs to consider norms of the terms involved in order to better understand how ✏
should be selected. There is a vast literature on the topic.2

The key advance here is that one can use (8) inside an iterative method for solving Js = �f without
ever forming (or factoring!) J . One simply needs repeated evaluation of the nonlinear functional,
f(x

k

+ ✏s) for varying values of s.

2
An excellent starting point is Knoll and Keyes, Jacobian-free NewtonKrylov methods: a survey of approaches and

applications, J. Comp. Phys, 2004.
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