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Interpolation

Basic interpolation problem: for given data

(t1, y1), (t2, y2), . . . (tm, ym) with t1 < t2 < · · · < tm

determine function f : R ! R such that

f(ti) = yi, i = 1, . . . ,m

f is interpolating function, or interpolant, for given data

Additional data might be prescribed, such as slope of
interpolant at given points

Additional constraints might be imposed, such as
smoothness, monotonicity, or convexity of interpolant

f could be function of more than one variable, but we will
consider only one-dimensional case
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Purposes for Interpolation

Plotting smooth curve through discrete data points

Reading between lines of table

Differentiating or integrating tabular data

Quick and easy evaluation of mathematical function

Replacing complicated function by simple one
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Interpolation vs Approximation

By definition, interpolating function fits given data points
exactly

Interpolation is inappropriate if data points subject to
significant errors

It is usually preferable to smooth noisy data, for example
by least squares approximation

Approximation is also more appropriate for special function
libraries
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Issues in Interpolation

Arbitrarily many functions interpolate given set of data points

What form should interpolating function have?

How should interpolant behave between data points?

Should interpolant inherit properties of data, such as
monotonicity, convexity, or periodicity?

Are parameters that define interpolating function
meaningful?

If function and data are plotted, should results be visually
pleasing?
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Choosing Interpolant

Choice of function for interpolation based on

How easy interpolating function is to work with
determining its parameters
evaluating interpolant
differentiating or integrating interpolant

How well properties of interpolant match properties of data
to be fit (smoothness, monotonicity, convexity, periodicity,
etc.)
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Example 



A Classic Interpolation Problem 

•  Suppose you’re asked to tabulate 
data such that linear interpolation 
between tabulated values is 
correct to 4 digits. 

•  How many entries are required 
on, say, [0,1]? 

•  How many digits should you have 
in the tabulated data? 



Error in Linear Interpolation 

h 

error 

If p(x) 2 lP

n�1 and p(x

j

) = f(x

j

), j = 1, . . . , n, then there

exists a ✓ 2 [x1, x2, . . . , xn, x] such that

f(x)� p(x) =

f

n

(✓)

n!

(x� x1)(x� x2) · · · (x� x

n

).

In particular, for linear interpolation, we have

f(x)� p(x) =

f

00
(✓)

2

(x� x1)(x� x2)

|f(x)� p(x)|  max

[x1:x2]

|f 00|
2

h

2

4

= max

[x1:x2]

h

2|f 00|
8

where the latter result pertains to x 2 [x1, x2].



Polynomial Interpolation Example 

❑ Given the table below, 

  estimate f(x=0.75). 
 

 

xj fj

0.6 1.2
0.8 2.0
1.0 2.4

Polynomial interpolation error formula:

If p(x) 2 lPn�1 and p(xj) = f(xj), j = 1, . . . , n, then there

exists a ✓ 2 [x1, x2, . . . , xn, x] such that

f(x)� p(x) =
f

n(✓)

n!
(x� x1)(x� x2) · · · (x� xn)

=
f

n(✓)

n!
qn(x), qn(x) 2 lPn.

1



Polynomial Interpolation Example 

❑ Given the table below, 

  estimate f(x=0.75). 
 

❑  A: 1.8  ---  You’ve just done (piecewise) linear interpolation. 

❑ Moreover, you know the error is · (0.2)2 f’’ / 8. 
❑  Estimate the error… 

xj fj

0.6 1.2
0.8 2.0
1.0 2.4

Polynomial interpolation error formula:

If p(x) 2 lPn�1 and p(xj) = f(xj), j = 1, . . . , n, then there

exists a ✓ 2 [x1, x2, . . . , xn, x] such that

f(x)� p(x) =
f

n(✓)

n!
(x� x1)(x� x2) · · · (x� xn)

=
f

n(✓)

n!
qn(x), qn(x) 2 lPn.

1



A Classic Polynomial Interpolation Problem 

Example: f(x) = cos(x)

We know that |f 00|  1 and thus, for linear interpolation

|f(x)� p(x)|  h

2

8
.

If we want 4 decimal places of accuracy, accounting for rounding, we need

|f(x)� p(x)|  h

2

8
 1

2
⇥ 10�4

h

2  4⇥ 10�4

h  0.02

x cos x

0.00 1.00000

0.02 0.99980

0.04 0.99920

0.06 0.99820

0.08 0.99680
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Functions for Interpolation

Families of functions commonly used for interpolation
include

Polynomials
Piecewise polynomials
Trigonometric functions
Exponential functions
Rational functions

For now we will focus on interpolation by polynomials and
piecewise polynomials

We will consider trigonometric interpolation (DFT) later
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Basis Functions

Family of functions for interpolating given data points is
spanned by set of basis functions �1(t), . . . ,�n(t)

Interpolating function f is chosen as linear combination of
basis functions,

f(t) =

nX

j=1

xj�j(t)

Requiring f to interpolate data (ti, yi) means

f(ti) =

nX

j=1

xj�j(ti) = yi, i = 1, . . . ,m

which is system of linear equations Ax = y for n-vector x
of parameters xj , where entries of m⇥ n matrix A are
given by aij = �j(ti)
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Existence, Uniqueness, and Conditioning

Existence and uniqueness of interpolant depend on
number of data points m and number of basis functions n

If m > n, interpolant usually doesn’t exist

If m < n, interpolant is not unique

If m = n, then basis matrix A is nonsingular provided data
points ti are distinct, so data can be fit exactly

Sensitivity of parameters x to perturbations in data
depends on cond(A), which depends in turn on choice of
basis functions
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Polynomial Interpolation

Simplest and most common type of interpolation uses
polynomials

Unique polynomial of degree at most n� 1 passes through
n data points (ti, yi), i = 1, . . . , n, where ti are distinct

There are many ways to represent or compute interpolating
polynomial, but in theory all must give same result

< interactive example >
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Monomial Basis

Monomial basis functions

�j(t) = t

j�1
, j = 1, . . . , n

give interpolating polynomial of form

pn�1(t) = x1 + x2t+ · · ·+ xnt
n�1

with coefficients x given by n⇥ n linear system

Ax =

2

6664

1 t1 · · · t

n�1
1

1 t2 · · · t

n�1
2

...
... . . . ...

1 tn · · · t

n�1
n

3

7775

2

6664

x1

x2
...
xn

3

7775
=

2

6664

y1

y2
...
yn

3

7775
= y

Matrix of this form is called Vandermonde matrix
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Example: Monomial Basis

Determine polynomial of degree two interpolating three
data points (�2,�27), (0,�1), (1, 0)
Using monomial basis, linear system is

Ax =

2

4
1 t1 t

2
1

1 t2 t

2
2

1 t3 t

2
3

3

5

2

4
x1

x2

x3

3

5
=

2

4
y1

y2

y3

3

5
= y

For these particular data, system is
2

4
1 �2 4

1 0 0

1 1 1

3

5

2

4
x1

x2

x3

3

5
=

2

4
�27

�1

0

3

5

whose solution is x =

⇥�1 5 �4

⇤T , so interpolating
polynomial is

p2(t) = �1 + 5t� 4t

2
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Monomial Basis, continued

< interactive example >

Solving system Ax = y using standard linear equation
solver to determine coefficients x of interpolating
polynomial requires O(n

3
) work

Michael T. Heath Scientific Computing 14 / 56



Example: Sinusoidal Bases for Periodic Functions 

sine.m 

ecos.m 
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Monomial Basis, continued

< interactive example >

Solving system Ax = y using standard linear equation
solver to determine coefficients x of interpolating
polynomial requires O(n

3
) work
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Monomial Basis, continued

For monomial basis, matrix A is increasingly ill-conditioned
as degree increases

Ill-conditioning does not prevent fitting data points well,
since residual for linear system solution will be small

But it does mean that values of coefficients are poorly
determined

Both conditioning of linear system and amount of
computational work required to solve it can be improved by
using different basis

Change of basis still gives same interpolating polynomial
for given data, but representation of polynomial will be
different

Michael T. Heath Scientific Computing 15 / 56



Interpolation
Polynomial Interpolation

Piecewise Polynomial Interpolation

Monomial, Lagrange, and Newton Interpolation
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Monomial Basis, continued

Conditioning with monomial basis can be improved by
shifting and scaling independent variable t

�j(t) =

✓
t� c

d

◆j�1

where, c = (t1 + tn)/2 is midpoint and d = (tn � t1)/2 is
half of range of data

New independent variable lies in interval [�1, 1], which also
helps avoid overflow or harmful underflow

Even with optimal shifting and scaling, monomial basis
usually is still poorly conditioned, and we must seek better
alternatives

< interactive example >
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Evaluating Polynomials

When represented in monomial basis, polynomial

pn�1(t) = x1 + x2t+ · · ·+ xnt
n�1

can be evaluated efficiently using Horner’s nested
evaluation scheme

pn�1(t) = x1 + t(x2 + t(x3 + t(· · · (xn�1 + txn) · · · )))
which requires only n additions and n multiplications

For example,

1� 4t+ 5t

2 � 2t

3
+ 3t

4
= 1 + t(�4 + t(5 + t(�2 + 3t)))

Other manipulations of interpolating polynomial, such as
differentiation or integration, are also relatively easy with
monomial basis representation
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Lagrange Interpolation

For given set of data points (ti, yi), i = 1, . . . , n, Lagrange
basis functions are defined by

`j(t) =

nY

k=1,k 6=j

(t� tk) /

nY

k=1,k 6=j

(tj � tk), j = 1, . . . , n

For Lagrange basis,

`j(ti) =

⇢
1 if i = j

0 if i 6= j

, i, j = 1, . . . , n

so matrix of linear system Ax = y is identity matrix

Thus, Lagrange polynomial interpolating data points (ti, yi)

is given by

pn�1(t) = y1`1(t) + y2`2(t) + · · ·+ yn`n(t)
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Lagrange Basis Functions

< interactive example >

Lagrange interpolant is easy to determine but more
expensive to evaluate for given argument, compared with
monomial basis representation
Lagrangian form is also more difficult to differentiate,
integrate, etc.
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Example: Lagrange Interpolation

Use Lagrange interpolation to determine interpolating
polynomial for three data points (�2,�27), (0,�1), (1, 0)

Lagrange polynomial of degree two interpolating three
points (t1, y1), (t2, y2), (t3, y3) is given by p2(t) =

y1
(t� t2)(t� t3)

(t1 � t2)(t1 � t3)
+ y2

(t� t1)(t� t3)

(t2 � t1)(t2 � t3)
+ y3

(t� t1)(t� t2)

(t3 � t1)(t3 � t2)

For these particular data, this becomes

p2(t) = �27

t(t� 1)

(�2)(�2� 1)

+ (�1)

(t+ 2)(t� 1)

(2)(�1)
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General Polynomial Interpolation 

xj fj

0.6 1.2

0.8 2.0

1.0 2.4

• Whether interpolating on segments or globally, error formula applies over

the interval.

If p(t) 2 lPn�1 and p(tj) = f(tj), j = 1, . . . , n, then there

exists a ✓ 2 [t1, t2, . . . , tn, t] such that

f(t)� p(t) =

f

n
(✓)

n!

(t� t1)(t� t2) · · · (t� tn)

=

f

n
(✓)

n!

qn(t), qn(t) 2 lPn.

• We generally have no control over f

n
(✓), so instead seek to optimize

choice of the tj in order to minimize

max

t2[t1,tn]
|qn(t)| .

• Such a problem is called a minimax problem and the solution is given

by the tjs being the roots of a Chebyshev polynomial, as we will discuss

shortly.

• First, however, we turn to the problem of constructing p(t) 2 lPn�1(t).

1



Constructing High-Order Polynomial Interpolants 

p(t) =
nX

j=1

fj lj(t)

lj(t) = 1 t = tj

lj(ti) = 0 t = ti, i 6= j

lj(t) 2 lPn�1(t)

lj(t) =
1

C
(t� t1)(t� t2) · · · (t� tj�1)(t� tj+1) · · · (t� tn)

C = (tj � t1)(tj � t2) · · · (tj � tj�1)(tj � tj+1) · · · (tj � tn)

lj(t) =

✓
t� t1
tj � t1

◆✓
t� t2
tj � t2

◆
· · ·

✓
t� tj�1

tj � tj�1

◆✓
t� tj+1

tj � tj+1

◆
· · ·

✓
t� tn
tj � tn

◆
.

1

❑  Lagrange Polynomials 

 

The lj(t) polynomials are chosen so that p(tj) = f(tj) := fj  

The lj(t)s are sometimes called the Lagrange cardinal functions. 

lj (ti ) = ±ij 



Constructing High-Order Polynomial Interpolants 

p(t) =
nX

j=1

fj lj(t)

lj(t) = 1 t = tj

lj(ti) = 0 t = ti, i 6= j

lj(t) 2 lPn�1(t)

lj(t) =
1

C
(t� t1)(t� t2) · · · (t� tj�1)(t� tj+1) · · · (t� tn)

C = (tj � t1)(tj � t2) · · · (tj � tj�1)(tj � tj+1) · · · (tj � tn)

lj(t) =

✓
t� t1
tj � t1

◆✓
t� t2
tj � t2

◆
· · ·

✓
t� tj�1

tj � tj�1

◆✓
t� tj+1

tj � tj+1

◆
· · ·

✓
t� tn
tj � tn

◆
.

1

❑  Lagrange Polynomials 

• Construct p(t) =
P

j fjlj(t).

• lj(t) given by above.

• Error formula f(t)� p(t) given as before.

• Can choose tj’s to minimize error polynomial qn(t).

• lj(t) is a polynomial of degree n� 1

• It is zero at t = ti, i 6= j.

• Choose C so that it is 1 at t = tj.

p(t) =

nX

j=1

fj lj(t)

lj(t) = 1 t = tj

lj(ti) = 0 t = ti, i 6= j

lj(t) 2 lPn�1(t)

lj(t) =

1

C
(t� t1)(t� t2) · · · (t� tj�1)(t� tj+1) · · · (t� tn)

C = (tj � t1)(tj � t2) · · · (tj � tj�1)(tj � tj+1) · · · (tj � tn)

lj(t) =

✓
t� t1
tj � t1

◆✓
t� t2
tj � t2

◆
· · ·

✓
t� tj�1

tj � tj�1

◆✓
t� tj+1

tj � tj+1

◆
· · ·

✓
t� tn
tj � tn

◆
.

1



Constructing High-Order Polynomial Interpolants 

• Construct p(t) =
P

j fjlj(t).

• lj(t) given by above.

• Error formula f(t)� p(t) given as before.

• Can choose tj’s to minimize error polynomial qn(t).

• lj(t) is a polynomial of degree n� 1

• It is zero at t = ti, i 6= j.

• Choose C so that it is 1 at t = tj.

p(t) =

nX

j=1

fj lj(t)

lj(t) = 1 t = tj

lj(ti) = 0 t = ti, i 6= j

lj(t) 2 lPn�1(t)

lj(t) =

1

C
(t� t1)(t� t2) · · · (t� tj�1)(t� tj+1) · · · (t� tn)

C = (tj � t1)(tj � t2) · · · (tj � tj�1)(tj � tj+1) · · · (tj � tn)

lj(t) =

✓
t� t1
tj � t1

◆✓
t� t2
tj � t2

◆
· · ·

✓
t� tj�1

tj � tj�1

◆✓
t� tj+1

tj � tj+1

◆
· · ·

✓
t� tn
tj � tn

◆
.

1



Constructing High-Order Polynomial Interpolants 

• Construct p(t) =
P

j fjlj(t).

• lj(t) given by above.

• Error formula f(t)� p(t) given as before.

• Can choose tj’s to minimize error polynomial qn(t).

• lj(t) is a polynomial of degree n� 1

• It is zero at t = ti, i 6= j.

• Choose C so that it is 1 at t = tj.

p(t) =

nX

j=1

fj lj(t)

lj(t) = 1 t = tj

lj(ti) = 0 t = ti, i 6= j

lj(t) 2 lPn�1(t)

lj(t) =

1

C
(t� t1)(t� t2) · · · (t� tj�1)(t� tj+1) · · · (t� tn)

C = (tj � t1)(tj � t2) · · · (tj � tj�1)(tj � tj+1) · · · (tj � tn)

lj(t) =

✓
t� t1
tj � t1

◆✓
t� t2
tj � t2

◆
· · ·

✓
t� tj�1

tj � tj�1

◆✓
t� tj+1

tj � tj+1

◆
· · ·

✓
t� tn
tj � tn

◆
.

1



Constructing High-Order Polynomial Interpolants 

❑  Although a bit tedious to do by hand, these formulas are relatively easy to 
evaluate with a computer. 

❑  So, to recap – Lagrange polynomial interpolation:   

• Construct p(t) =
P

j fjlj(t).

• lj(t) given by above.

• Error formula f(t)� p(t) given as before.

• Can choose tj’s to minimize error polynomial qn(t).

• lj(t) is a polynomial of degree n� 1

• It is zero at t = ti, i 6= j.

• Choose C so that it is 1 at t = tj.

p(t) =

nX

j=1

fj lj(t)

lj(t) = 1 t = tj

lj(ti) = 0 t = ti, i 6= j

lj(t) 2 lPn�1(t)

lj(t) =

1

C
(t� t1)(t� t2) · · · (t� tj�1)(t� tj+1) · · · (t� tn)

C = (tj � t1)(tj � t2) · · · (tj � tj�1)(tj � tj+1) · · · (tj � tn)

lj(t) =

✓
t� t1
tj � t1

◆✓
t� t2
tj � t2

◆
· · ·

✓
t� tj�1

tj � tj�1

◆✓
t� tj+1

tj � tj+1

◆
· · ·

✓
t� tn
tj � tn

◆
.

1



Lagrange Basis Functions, n=2 (linear) 



Lagrange Basis Functions, n=3 (quadratic) 



Comment on Costs 

❑  Two parts: 
❑  A.   Finding coefficients 
❑  B.   Evaluating interpolant. 



Costs for Lagrange Interpolation

• Consider the following scheme, which is O(n) per evaluation:

p(t) =

nX

j=1

l
j

(t)f
j

(1)

l
j

(t) = c
j

q
j

(t) r
j

(t) (2)

c
j

:=

2

4
Y

i 6=j

(x
j

� x
i

)

3

5
�1

(3)

q
j

(t) := (t� t1)(t� t2) · · · (t� t
j�1) = q

j�1(t) · (t� t
j�1) (4)

r
j

(t) := (t� t
j+1)(t� t

j+2) · · · (t� t
n

) = (t� t
j+1) · rj+1. (5)

– The cost of (1) is 2n.

– The cost of (2) is 2, for j=1. . . n.

– The cost of (3) is O(n2
), but one-time only.

– The cost of (4) is 2, for j=1. . . n.

– The cost of (5) is 2, for j=1. . . n.

• The total evaluation cost for m � n evaluations is O(nm).

• There are no O(n3
) costs.

Fast evaluation… 



Interpolation
Polynomial Interpolation

Piecewise Polynomial Interpolation

Monomial, Lagrange, and Newton Interpolation
Orthogonal Polynomials
Accuracy and Convergence

Newton Interpolation

For given set of data points (ti, yi), i = 1, . . . , n, Newton
basis functions are defined by

⇡j(t) =

j�1Y

k=1

(t� tk), j = 1, . . . , n

where value of product is taken to be 1 when limits make it
vacuous

Newton interpolating polynomial has form

pn�1(t) = x1 + x2(t� t1) + x3(t� t1)(t� t2) +

· · ·+ xn(t� t1)(t� t2) · · · (t� tn�1)

For i < j, ⇡j(ti) = 0, so basis matrix A is lower triangular,
where aij = ⇡j(ti)
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Newton Basis Functions

< interactive example >
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Newton Interpolation, continued

Solution x to system Ax = y can be computed by
forward-substitution in O(n

2
) arithmetic operations

Moreover, resulting interpolant can be evaluated efficiently
for any argument by nested evaluation scheme similar to
Horner’s method

Newton interpolation has better balance between cost of
computing interpolant and cost of evaluating it
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Example: Newton Interpolation
Use Newton interpolation to determine interpolating
polynomial for three data points (�2,�27), (0,�1), (1, 0)
Using Newton basis, linear system is

2

4
1 0 0

1 t2 � t1 0

1 t3 � t1 (t3 � t1)(t3 � t2)

3

5

2

4
x1

x2

x3

3

5
=

2

4
y1

y2

y3

3

5

For these particular data, system is
2

4
1 0 0

1 2 0

1 3 3

3

5

2

4
x1

x2

x3

3

5
=

2

4
�27

�1

0

3

5

whose solution by forward substitution is
x =

⇥�27 13 �4

⇤T , so interpolating polynomial is

p(t) = �27 + 13(t+ 2)� 4(t+ 2)t
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Newton Interpolation, continued

Solution x to system Ax = y can be computed by
forward-substitution in O(n

2
) arithmetic operations

Moreover, resulting interpolant can be evaluated efficiently
for any argument by nested evaluation scheme similar to
Horner’s method

Newton interpolation has better balance between cost of
computing interpolant and cost of evaluating it

Michael T. Heath Scientific Computing 23 / 56
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Newton Interpolation, continued

If pj(t) is polynomial of degree j � 1 interpolating j given
points, then for any constant xj+1,

pj+1(t) = pj(t) + xj+1⇡j+1(t)

is polynomial of degree j that also interpolates same j

points
Free parameter xj+1 can then be chosen so that pj+1(t)

interpolates yj+1,

xj+1 =
yj+1 � pj(tj+1)

⇡j+1(tj+1)

Newton interpolation begins with constant polynomial
p1(t) = y1 interpolating first data point and then
successively incorporates each remaining data point into
interpolant < interactive example >
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Divided Differences

Given data points (ti, yi), i = 1, . . . , n, divided differences,
denoted by f [ ], are defined recursively by

f [t1, t2, . . . , tk] =
f [t2, t3, . . . , tk]� f [t1, t2, . . . , tk�1]

tk � t1

where recursion begins with f [tk] = yk, k = 1, . . . , n

Coefficient of jth basis function in Newton interpolant is
given by

xj = f [t1, t2, . . . , tj ]

Recursion requires O(n

2
) arithmetic operations to compute

coefficients of Newton interpolant, but is less prone to
overflow or underflow than direct formation of triangular
Newton basis matrix
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Orthogonal Polynomials

Inner product can be defined on space of polynomials on
interval [a, b] by taking

hp, qi =
Z b

a
p(t)q(t)w(t)dt

where w(t) is nonnegative weight function

Two polynomials p and q are orthogonal if hp, qi = 0

Set of polynomials {pi} is orthonormal if

hpi, pji =
⇢

1 if i = j

0 otherwise

Given set of polynomials, Gram-Schmidt orthogonalization
can be used to generate orthonormal set spanning same
space
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Orthogonal Polynomials, continued

For example, with inner product given by weight function
w(t) ⌘ 1 on interval [�1, 1], applying Gram-Schmidt
process to set of monomials 1, t, t

2
, t

3
, . . . yields Legendre

polynomials

1, t, (3t

2 � 1)/2, (5t

3 � 3t)/2, (35t

4 � 30t

2
+ 3)/8,

(63t

5 � 70t

3
+ 15t)/8, . . .

first n of which form an orthogonal basis for space of
polynomials of degree at most n� 1

Other choices of weight functions and intervals yield other
orthogonal polynomials, such as Chebyshev, Jacobi,
Laguerre, and Hermite
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Orthogonal Polynomials, continued

Orthogonal polynomials have many useful properties

They satisfy three-term recurrence relation of form

pk+1(t) = (↵kt+ �k)pk(t)� �kpk�1(t)

which makes them very efficient to generate and evaluate

Orthogonality makes them very natural for least squares
approximation, and they are also useful for generating
Gaussian quadrature rules, which we will see later
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Chebyshev Polynomials

kth Chebyshev polynomial of first kind, defined on interval
[�1, 1] by

Tk(t) = cos(k arccos(t))

are orthogonal with respect to weight function (1� t

2
)

�1/2

First few Chebyshev polynomials are given by

1, t, 2t

2 � 1, 4t

3 � 3t, 8t

4 � 8t

2
+1, 16t

5 � 20t

3
+5t, . . .

Equi-oscillation property : successive extrema of Tk are
equal in magnitude and alternate in sign, which distributes
error uniformly when approximating arbitrary continuous
function

Michael T. Heath Scientific Computing 30 / 56



Chebyshev Polynomials

T0(x) = 1

T1(x) = x

T2(x) = 2x2 � 1

T3(x) = 4x3 � 3x

T4(x) = 8x4 � 8x2 + 1

T5(x) = 16x5 � 20x3 + 5x

T6(x) = 32x6 � 48x4 + 18x2 � 1

Legendre Polynomials

P0(x) = 1

P1(x) = x

P2(x) =

1
2

�
3x2 � 1

�

P3(x) =

1
2

�
5x3 � 3x

�

P4(x) =

1
8

�
35x4 � 30x3 + 3

�

P5(x) =

1
8

�
63x5 � 70x3 + 15x

�

P6(x) =

1
16

�
231x6 � 315x4 + 105x2 � 5

�
.

Chebyshev Polynomials

T0(x) = 1

T1(x) = x

T2(x) = 2x2 � 1

T3(x) = 4x3 � 3x

T4(x) = 8x4 � 8x2 + 1

T5(x) = 16x5 � 20x3 + 5x

T6(x) = 32x6 � 48x4 + 18x2 � 1

Legendre Polynomials

P0(x) = 1

P1(x) = x

P2(x) =

1
2

�
3x2 � 1

�

P3(x) =

1
2

�
5x3 � 3x

�

P4(x) =

1
8

�
35x4 � 30x3 + 3

�

P5(x) =

1
8

�
63x5 � 70x3 + 15x

�

P6(x) =

1
16

�
231x6 � 315x4 + 105x2 � 5

�
.

• Recursion relationships:

Chebyshev: T
n+1(x) = 2xT

n

(x) � T
n�1(x)

Legendre: (n+ 1)P
n+1(x) = (2n+ 1)xP

n

(x) � nP
n�1(x).

• Chebyshev polynomials orthogonal with respect to w(x) = (1� x2)�
1
2
.

• Legendre polynomials orthogonal with respect to w(x) = 1.

• Chebyshev polynomials important for minimax problems (e.g., minimize

maximum of p(t)� f(t)).

• Legendre polynomials important for Gauss quadrature rules.

• These and other orthogonal polynomials have other important uses.
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Chebyshev Basis Functions

< interactive example >
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Nth-Order Gauss Chebyshev Points 

Matlab Demo: cheb_fun_demo.m 
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Chebyshev Points
Chebyshev points are zeros of Tk, given by

ti = cos

✓
(2i� 1)⇡

2k

◆
, i = 1, . . . , k

or extrema of Tk, given by

ti = cos

✓
i⇡

k

◆
, i = 0, 1, . . . , k

Chebyshev points are abscissas of points equally spaced
around unit circle in R2

Chebyshev points have attractive properties for
interpolation and other problems
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Interpolating Continuous Functions

If data points are discrete sample of continuous function,
how well does interpolant approximate that function
between sample points?

If f is smooth function, and pn�1 is polynomial of degree at
most n� 1 interpolating f at n points t1, . . . , tn, then

f(t)� pn�1(t) =
f

(n)
(✓)

n!

(t� t1)(t� t2) · · · (t� tn)

where ✓ is some (unknown) point in interval [t1, tn]

Since point ✓ is unknown, this result is not particularly
useful unless bound on appropriate derivative of f is
known
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Interpolating Continuous Functions, continued

If |f (n)
(t)|  M for all t 2 [t1, tn], and

h = max{ti+1 � ti : i = 1, . . . , n� 1}, then

max

t2[t1,tn]
|f(t)� pn�1(t)|  Mh

n

4n

Error diminishes with increasing n and decreasing h, but
only if |f (n)

(t)| does not grow too rapidly with n

< interactive example >
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High-Degree Polynomial Interpolation

Interpolating polynomials of high degree are expensive to
determine and evaluate

In some bases, coefficients of polynomial may be poorly
determined due to ill-conditioning of linear system to be
solved

High-degree polynomial necessarily has lots of “wiggles,”
which may bear no relation to data to be fit

Polynomial passes through required data points, but it may
oscillate wildly between data points
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Convergence

Polynomial interpolating continuous function may not
converge to function as number of data points and
polynomial degree increases

Equally spaced interpolation points often yield
unsatisfactory results near ends of interval

If points are bunched near ends of interval, more
satisfactory results are likely to be obtained with
polynomial interpolation

Use of Chebyshev points distributes error evenly and
yields convergence throughout interval for any sufficiently
smooth function
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Example: Runge’s Function

Polynomial interpolants of Runge’s function at equally
spaced points do not converge

< interactive example >
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Example: Runge’s Function

Polynomial interpolants of Runge’s function at Chebyshev
points do converge

< interactive example >
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Chebyshev Convergence is exponential for smooth f(t). 



Important Polynomial Interpolation Result

If p(x) 2 lP
n�1 and p(x

j

) = f(x
j

), j = 1, . . . , n, then there
exists a ✓ 2 [x1, x2, . . . , xn, x] such that

f(x)� p(x) =
fn(✓)

n!
(x� x1)(x� x2) · · · (x� x

n

)

|f(x)� p(x)|  M

n!
|(x� x1)(x� x2) · · · (x� x

n

)| ,

where M = max
✓

|fn(✓)|.

• Note that f(x
j

)� p(x
j

) = 0, j = 1, . . . , n, as should be the case.

• The formula applies to extrapolation (x 62 [x1, . . . , xn]) as well
as interpolation (x 2 [x1, . . . , xn]).

• The error is contolled by the maximum of |fn| on the interval of
interest, which is the smallest interval containing the x

j

s and x.

• Notice that if f 2 lP
n

then fn is a constant.
In particular, if f(x) = xn, the error is simply

f(x)� p(x) = (x� x1)(x� x2) · · · (x� x
n

).

• On [-1,1], the Chebyshev points minimize

q(x) := (x� x1)(x� x2) · · · (x� x
n

).



An important polynomial interpolation result for f(x) 2 C

n

:

If p(x) 2 lP
n�1 and p(x

j

) = f(x
j

), j = 1, . . . , n, then there
exists a ✓ 2 [x1, x2, . . . , xn, x] such that

f(x)� p(x) =
f

n(✓)

n!
(x� x1)(x� x2) · · · (x� x

n

).

In particular, for linear interpolation, we have

f(x)� p(x) =
f

00(✓)

2
(x� x1)(x� x2)

|f(x)� p(x)|  max
[x1:x2]

|f 00|
2

h

2

4
= max

[x1:x2]

h

2|f 00|
8

where the latter result pertains to x 2 [x1, x2].

2



Examples:  Application of Error Formula, etc. 

❑  What is the sum of the Lagrange cardinal functions at any given x? 

❑  Assume that  0 <  t1 < t2 < … < tn < 1 and that polynomial 
interpolation is used to interpolate cos t on [0,1]. 

     Show that for any 5 points on [0,1] 
 

 | cos(t) – p(t) | < .01 
 
 



A Classic Interpolation Problem 

•  Q: What accuracy can we expect 
when interpolating from the 
attached table, using piecewise 
linear interpolation? 

•  A: What do we need to estimate 
the error? 
•  h 
•  f’’  
•  Use finite difference to 

estimate f’’ … 
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Taylor Polynomial

Another useful form of polynomial interpolation for smooth
function f is polynomial given by truncated Taylor series

pn(t) = f(a)+f

0
(a)(t�a)+

f

00
(a)

2

(t�a)

2
+· · ·+f

(n)
(a)

n!

(t�a)

n

Polynomial interpolates f in that values of pn and its first n
derivatives match those of f and its first n derivatives
evaluated at t = a, so pn(t) is good approximation to f(t)

for t near a

We have already seen examples in Newton’s method for
nonlinear equations and optimization

< interactive example >
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Piecewise Polynomial Interpolation

Fitting single polynomial to large number of data points is
likely to yield unsatisfactory oscillating behavior in
interpolant

Piecewise polynomials provide alternative to practical and
theoretical difficulties with high-degree polynomial
interpolation

Main advantage of piecewise polynomial interpolation is
that large number of data points can be fit with low-degree
polynomials

In piecewise interpolation of given data points (ti, yi),
different function is used in each subinterval [ti, ti+1]

Abscissas ti are called knots or breakpoints, at which
interpolant changes from one function to another
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Piecewise Interpolation, continued

Simplest example is piecewise linear interpolation, in
which successive pairs of data points are connected by
straight lines

Although piecewise interpolation eliminates excessive
oscillation and nonconvergence, it appears to sacrifice
smoothness of interpolating function

We have many degrees of freedom in choosing piecewise
polynomial interpolant, however, which can be exploited to
obtain smooth interpolating function despite its piecewise
nature

< interactive example >
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Polynomial Interpolation 

❑  Two types:   Global  or Piecewise 

❑  Two scenarios: 
❑ A:  points are given to you 
❑ B:  you choose the points 

❑  Case A: piecewise polynomials are most common – STABLE. 
❑  Piecewise linear 
❑  Splines 
❑  Hermite  (matlab “pchip” – piecewise cubic Hermite int. polynomial) 

❑  Case B: high-order polynomials are OK if points chosen wisely 
❑  Roots of orthogonal polynomials 
❑  Convergence is exponential:  err ~ Ce-¾ n, instead of algebraic: err~Cn-k 



Polynomial Interpolation Example 

❑ Given the table below, 

  estimate f(x=0.75). 
 

 

xj fj

0.6 1.2
0.8 2.0
1.0 2.4

Polynomial interpolation error formula:

If p(x) 2 lPn�1 and p(xj) = f(xj), j = 1, . . . , n, then there

exists a ✓ 2 [x1, x2, . . . , xn, x] such that

f(x)� p(x) =
f

n(✓)

n!
(x� x1)(x� x2) · · · (x� xn)

=
f

n(✓)

n!
qn(x), qn(x) 2 lPn.

1



Polynomial Interpolation Example 

❑ Given the table below, 

  estimate f(x=0.75). 
 

❑  A: 1.8  ---  You’ve just done (piecewise) linear interpolation. 

❑ Moreover, you know the error is · (0.2)2 f’’ / 8. 
❑  Estimate the error… 

xj fj

0.6 1.2
0.8 2.0
1.0 2.4

Polynomial interpolation error formula:

If p(x) 2 lPn�1 and p(xj) = f(xj), j = 1, . . . , n, then there

exists a ✓ 2 [x1, x2, . . . , xn, x] such that

f(x)� p(x) =
f

n(✓)

n!
(x� x1)(x� x2) · · · (x� xn)

=
f

n(✓)

n!
qn(x), qn(x) 2 lPn.

1

quick_spline.m 
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Hermite Interpolation

In Hermite interpolation, derivatives as well as values of
interpolating function are taken into account

Including derivative values adds more equations to linear
system that determines parameters of interpolating
function

To have unique solution, number of equations must equal
number of parameters to be determined

Piecewise cubic polynomials are typical choice for Hermite
interpolation, providing flexibility, simplicity, and efficiency
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Hermite Cubic Interpolation

Hermite cubic interpolant is piecewise cubic polynomial
interpolant with continuous first derivative

Piecewise cubic polynomial with n knots has 4(n� 1)

parameters to be determined

Requiring that it interpolate given data gives 2(n� 1)

equations

Requiring that it have one continuous derivative gives n� 2

additional equations, or total of 3n� 4, which still leaves n

free parameters

Thus, Hermite cubic interpolant is not unique, and
remaining free parameters can be chosen so that result
satisfies additional constraints
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Cubic Spline Interpolation

Spline is piecewise polynomial of degree k that is k � 1

times continuously differentiable

For example, linear spline is of degree 1 and has 0

continuous derivatives, i.e., it is continuous, but not
smooth, and could be described as “broken line”

Cubic spline is piecewise cubic polynomial that is twice
continuously differentiable

As with Hermite cubic, interpolating given data and
requiring one continuous derivative imposes 3n� 4

constraints on cubic spline

Requiring continuous second derivative imposes n� 2

additional constraints, leaving 2 remaining free parameters
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Cubic Splines, continued

Final two parameters can be fixed in various ways

Specify first derivative at endpoints t1 and tn

Force second derivative to be zero at endpoints, which
gives natural spline

Enforce “not-a-knot” condition, which forces two
consecutive cubic pieces to be same

Force first derivatives, as well as second derivatives, to
match at endpoints t1 and tn (if spline is to be periodic)

Michael T. Heath Scientific Computing 45 / 56



Interpolation
Polynomial Interpolation

Piecewise Polynomial Interpolation

Piecewise Polynomial Interpolation
Hermite Cubic Interpolation
Cubic Spline Interpolation

Example: Cubic Spline Interpolation

Determine natural cubic spline interpolating three data
points (ti, yi), i = 1, 2, 3

Required interpolant is piecewise cubic function defined by
separate cubic polynomials in each of two intervals [t1, t2]

and [t2, t3]

Denote these two polynomials by

p1(t) = ↵1 + ↵2t+ ↵3t
2
+ ↵4t

3

p2(t) = �1 + �2t+ �3t
2
+ �4t

3

Eight parameters are to be determined, so we need eight
equations
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Cubic Spline Formulation – 2 Segments 

Interpolatory

p1(t1) = y1

p1(t2) = y2

p2(t2) = y2

p2(t3) = y3

Continuity of Derivatives

p01(t2) = p02(t2)

p001(t2) = p002(t2)

End Conditions

p001(t1) = 0

p002(t3) = 0

1

Interpolatory

p1(t1) = y1

p1(t2) = y2

p2(t2) = y2

p2(t3) = y3

Continuity of Derivatives

p01(t2) = p02(t2)

p001(t2) = p002(t2)

End Conditions

p001(t1) = 0

p002(t3) = 0

1

8 Unknowns

p1(t) = ↵1 + ↵2t + ↵3t
2
+ ↵4t

3

p2(t) = �1 + �2t + �3t
2
+ �4t

3

8 Equations

Interpolatory

p1(t1) = y1

p1(t2) = y2

p2(t2) = y2

p2(t3) = y3

Continuity of Derivatives

p01(t2) = p02(t2)

p001(t2) = p002(t2)

End Conditions

p001(t1) = 0

p002(t3) = 0

1

8 Unknowns

p1(t) = ↵1 + ↵2t + ↵3t
2
+ ↵4t

3

p2(t) = �1 + �2t + �3t
2
+ �4t

3

(Natural Spline)

8 Equations

Interpolatory

p1(t1) = y1

p1(t2) = y2

p2(t2) = y2

p2(t3) = y3

Continuity of Derivatives

p01(t2) = p02(t2)

p001(t2) = p002(t2)

End Conditions

p001(t1) = 0

p002(t3) = 0

1



❑  h 



Some Cubic Spline Properties 

❑  Continuity 
❑  1st derivative: continuous 
❑  2nd derivative: continuous 

❑  “Natural Spline” minimizes  integrated curvature: 
     over all twice-differentiable f(x)  
     passing through (xj,fj), j=1,…,n. 

❑  Robust / Stable (unlike high-order polynomial interpolation) 
❑  Commonly used in computer graphics, CAD software, etc. 
❑  Usually used in parametric form (DEMO) 
❑  There are other forms, e.g., tension-splines, that are also useful. 
❑  For clamped boundary conditions, convergence is O(h4) 
❑  For small displacements, natural spline is like a physical spline. 

(DEMO) 



Interpolation
Polynomial Interpolation

Piecewise Polynomial Interpolation

Piecewise Polynomial Interpolation
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Cubic Spline Interpolation

Example, continued

Requiring first cubic to interpolate data at end points of first
interval [t1, t2] gives two equations

↵1 + ↵2t1 + ↵3t
2
1 + ↵4t

3
1 = y1

↵1 + ↵2t2 + ↵3t
2
2 + ↵4t

3
2 = y2

Requiring second cubic to interpolate data at end points of
second interval [t2, t3] gives two equations

�1 + �2t2 + �3t
2
2 + �4t

3
2 = y2

�1 + �2t3 + �3t
2
3 + �4t

3
3 = y3

Requiring first derivative of interpolant to be continuous at
t2 gives equation

↵2 + 2↵3t2 + 3↵4t
2
2 = �2 + 2�3t2 + 3�4t

2
2
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Example, continued

Requiring second derivative of interpolant function to be
continuous at t2 gives equation

2↵3 + 6↵4t2 = 2�3 + 6�4t2

Finally, by definition natural spline has second derivative
equal to zero at endpoints, which gives two equations

2↵3 + 6↵4t1 = 0

2�3 + 6�4t3 = 0

When particular data values are substituted for ti and yi,
system of eight linear equations can be solved for eight
unknown parameters ↵i and �i
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Hermite Cubic vs Spline Interpolation

Choice between Hermite cubic and spline interpolation
depends on data to be fit and on purpose for doing
interpolation

If smoothness is of paramount importance, then spline
interpolation may be most appropriate

But Hermite cubic interpolant may have more pleasing
visual appearance and allows flexibility to preserve
monotonicity if original data are monotonic

In any case, it is advisable to plot interpolant and data to
help assess how well interpolating function captures
behavior of original data

< interactive example >
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Hermite Cubic vs Spline Interpolation
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Piecewise Polynomial Interpolation
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B-splines
B-splines form basis for family of spline functions of given
degree
B-splines can be defined in various ways, including
recursion (which we will use), convolution, and divided
differences
Although in practice we use only finite set of knots
t1, . . . , tn, for notational convenience we will assume
infinite set of knots

· · · < t�2 < t�1 < t0 < t1 < t2 < · · ·
Additional knots can be taken as arbitrarily defined points
outside interval [t1, tn]
We will also use linear functions

v

k
i (t) = (t� ti)/(ti+k � ti)
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B-splines, continued

To start recursion, define B-splines of degree 0 by

B

0
i (t) =

⇢
1 if ti  t < ti+1

0 otherwise

and then for k > 0 define B-splines of degree k by

B

k
i (t) = v

k
i (t)B

k�1
i (t) + (1� v

k
i+1(t))B

k�1
i+1 (t)

Since B

0
i is piecewise constant and v

k
i is linear, B1

i is
piecewise linear

Similarly, B2
i is in turn piecewise quadratic, and in general,

B

k
i is piecewise polynomial of degree k
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B-splines, continued

< interactive example >
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B-splines, continued

Important properties of B-spline functions B

k
i

1 For t < ti or t > ti+k+1, B

k
i (t) = 0

2 For ti < t < ti+k+1, B

k
i (t) > 0

3 For all t,
P1

i=�1B

k
i (t) = 1

4 For k � 1, B

k
i has k � 1 continuous derivatives

5 Set of functions {Bk
1�k, . . . , B

k
n�1} is linearly independent

on interval [t1, tn] and spans space of all splines of degree
k having knots ti
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B-splines, continued

Properties 1 and 2 together say that B-spline functions
have local support

Property 3 gives normalization

Property 4 says that they are indeed splines

Property 5 says that for given k, these functions form basis
for set of all splines of degree k
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B-splines, continued

If we use B-spline basis, linear system to be solved for
spline coefficients will be nonsingular and banded

Use of B-spline basis yields efficient and stable methods
for determining and evaluating spline interpolants, and
many library routines for spline interpolation are based on
this approach

B-splines are also useful in many other contexts, such as
numerical solution of differential equations, as we will see
later
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