Outline

0 Interpolation

e Polynomial Interpolation

e Piecewise Polynomial Interpolation

T

Michael T. Heath Scientific Computing 2/56



Chapter 7: Interpolation

- Topics:
d Examples
d Polynomial Interpolation — bases, error, Chebyshev, piecewise
a Orthogonal Polynomials
a Splines — error, end conditions
2 Parametric interpolation

A Multivariate interpolation: f(x,y)



Interpolation Motivation
Choosing Interpolant
Existence and Uniqueness

Interpolation

@ Basic interpolation problem: for given data

(t1,y1), (t2,92), . (tmyym) With ] <to <--- <t
determine function f: R — R such that
flt))=vy;, 1=1,...,m
@ f is interpolating function, or interpolant, for given data

@ Additional data might be prescribed, such as slope of
interpolant at given points

@ Additional constraints might be imposed, such as
smoothness, monotonicity, or convexity of interpolant

@ f could be function of more than one variable, but we will
consider only one-dimensional case 1
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Interpolation Motivation
Choosing Interpolant
Existence and Uniqueness

Purposes for Interpolation

@ Plotting smooth curve through discrete data points
@ Reading between lines of table

@ Differentiating or integrating tabular data

@ Quick and easy evaluation of mathematical function

@ Replacing complicated function by simple one

i
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Interpolation Motivation
Choosing Interpolant
Existence and Uniqueness

Interpolation vs Approximation

@ By definition, interpolating function fits given data points
exactly

@ Interpolation is inappropriate if data points subject to
significant errors

@ |t is usually preferable to smooth noisy data, for example
by least squares approximation

@ Approximation is also more appropriate for special function
libraries

1
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Interpolation Motivation
Choosing Interpolant
Existence and Uniqueness

Issues In Interpolation

Arbitrarily many functions interpolate given set of data points
@ What form should interpolating function have?
@ How should interpolant behave between data points?

@ Should interpolant inherit properties of data, such as
monotonicity, convexity, or periodicity?

@ Are parameters that define interpolating function
meaningful?  For example, function values, slopes, etc. ?

@ If function and data are plotted, should results be visually
pleasing?

i
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Interpolation Motivation
Choosing Interpolant
Existence and Uniqueness

Choosing Interpolant

Choice of function for interpolation based on

@ How easy interpolating function is to work with

@ determining its parameters
e evaluating interpolant
e differentiating or integrating interpolant

@ How well properties of interpolant match properties of data
to be fit (smoothness, monotonicity, convexity, periodicity,
etc.)

1
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Example

)
matlab “pchip()” function
‘T() 2 1 6 b 10
0
pt) matlab “spline()” function
[N
% 2 1 ( 8 10



A Classic Interpolation Problem

« Suppose you're asked to tabulate

data such that linear interpolation 41.00 1.59494 33514

. .01 9490 34645

between tabulated values is .02 9486 11840

. «03 9481 65154

correct to 4 digits. .04 9476 94642

41.06 1.59472 00364

. . .06 9466 82381

 How many entries are required .07 9461 40756

.08 9455 75554

on, say, [0,1]7? .09 9449 86844

41.10 1.59443 74?95

. . oll 9437 39181

« How many digits should you have 12 “ 9430 80377
in the tabulated data? 14 0416 93207

41.15 || 1.59409 65002

«16 9402 13830

17 9394 39775

.18 9386 42927

«19 9378 23376




Error in Linear Interpolation

VL Vi
[1:29] 2 4 (110 8




Polynomial Interpolation Example

1 Given the table below,

T | Jj
0.6 | 1.2
0.8 | 2.0
1.0 | 2.4

estimate f(x=0.75).



Polynomial Interpolation Example

1 Given the table below,

T | Jj
0.6 | 1.2
0.8 | 2.0
1.0 | 2.4

estimate f(x=0.75).
d A: 1.8 --- You've just done (piecewise) linear interpolation.

- Moreover, you know the error is < (0.2)° " / 8.
a Estimate the error...



A Classic Polynomial Interpolation Problem

Example: f(z) = cos(z)
We know that |f”| < 1 and thus, for linear interpolation

h2
f@) = p@) <

If we want 4 decimal places of accuracy, accounting for rounding, we need
[ (z) — p(z)]

h2

N
b";OO
X
—_
-

L

h

IA
=
o
N

X cos X
0.00 1.00000
0.02 0.99980
0.04 0.99920
0.06 0.99820
0.08 0.99680



Interpolation Motivation
Choosing Interpolant
Existence and Uniqueness

Functions for Interpolation

@ Families of functions commonly used for interpolation
include

e Polynomials

e Piecewise polynomials
e Trigonometric functions
e Exponential functions
e Rational functions

@ For now we will focus on interpolation by polynomials and
piecewise polynomials

@ We will consider trigonometric interpolation (DFT) later
1
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Interpolation Motivation
Choosing Interpolant
Existence and Uniqueness

Basis Functions

@ Family of functions for interpolating given data points is
spanned by set of basis functions ¢1(t), ..., ¢n(t)

@ Interpolating function f is chosen as linear combination of
basis functions,

F) =) ;)
j=1
@ Requiring f to interpolate data (¢;, ;) means

j=1

which is system of linear equations Ax = y for n-vector x
of parameters z;, where entries of m x n matrix A are

given by a;; = ¢;(t:) |
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Interpolation Motivation
Choosing Interpolant
Existence and Uniqueness

Existence, Unigueness, and Conditioning

@ Existence and uniqueness of interpolant depend on
number of data points m and number of basis functions n

@ If m > n, interpolant usually doesn’t exist  (linear least squares)
@ If m < n, interpolant is not unique

@ If m = n, then basis matrix A is nonsingular provided data
points t; are distinct, so data can be fit exactly

@ Sensitivity of parameters x to perturbations in data
depends on cond(A), which depends in turn on choice of
basis functions

1
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Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Polynomial Interpolation

@ Simplest and most common type of interpolation uses
polynomials

@ Unique polynomial of degree at most n — 1 passes through
n data points (¢;,v;), i = 1,...,n, where t; are distinct

@ There are many ways to represent or compute interpolating
polynomial, but in theory all must give same result

1

Michael T. Heath Scientific Computing 11/ 56



Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Monomial Basis

® Monomial basis functions
pi(t) =t j=1,...,n
give interpolating polynomial of form
Pr_1(t) = x1 + 2ot 4+ -+ + 2pt" !

with coefficients o given by n x n linear system

(1t - t?_i_ 1 | Y1 |
A — 1 to --- t’g— 9 _ Y9 .y
1 & .- tg_l_ | T | | Yn |
@ Matrix of this form is called Vandermonde matrix 1
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Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Example: Monomial Basis

@ Determine polynomial of degree two interpolating three
data points (-2, —27), (0, —1), (1,0)

@ Using monomial basis, linear system is

1t 7] [2q] Y1 |
Aw = (1 tQ t% X9 = |y21| =y
_1 t3 t%_ _ZIZg_ _y3_

@ For these particular data, system is

1 -2 4] [z —27
1 0 O 2| — —1
1 1 1] [=z3] 0]
whose solutionis z = [-1 5 —4]", so interpolating
polynomial is
pa(t) = —1 + 5t — 4¢° .
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Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Monomial Basis, continued

@ Solving system Ax = y using standard linear equation
solver to determine coefficients x of interpolating
polynomial requires O(n?) work 1
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Example: Sinusoidal Bases for Periodic Functions

- sine.m




Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Monomial Basis, continued

@ Solving system Ax = y using standard linear equation
solver to determine coefficients x of interpolating
polynomial requires O(n?) work 1
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Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Monomial Basis, continued

@ For monomial basis, matrix A is increasingly ill-conditioned
as degree increases

@ lll-conditioning does not prevent fitting data points well,
since residual for linear system solution will be small

@ But it does mean that values of coefficients are poorly
determined

@ Both conditioning of linear system and amount of
computational work required to solve it can be improved by
using different basis

@ Change of basis still gives same interpolating polynomial
for given data, but representation of polynomial will be
different
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Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Monomial Basis, continued

@ Conditioning with monomial basis can be improved by
shifting and scaling independent variable ¢

b;(t) = (t y C)jl

where, ¢ = (t; + t,)/2 is midpoint and d = (¢, — t1)/2 is
half of range of data

@ New independent variable lies in interval |—1, 1], which also
helps avoid overflow or harmful underflow

@ Even with optimal shifting and scaling, monomial basis
usually is still poorly conditioned, and we must seek better
alternatives

T
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Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Evaluating Polynomials

@ When represented in monomial basis, polynomial
Po1(t) = @1 + mot + -+ + 3 t"

can be evaluated efficiently using Horner's nested
evaluation scheme

Pr—1(t) = z1 + t(z2 + t(xg + t(- - (Tp_1 + tzp) -+ +)))
which requires only n additions and n multiplications
@ For example,
1 — 4t + 5t —2t° + 3t* = 1+ t(—4 4+ t(5+ t(—2 + 3t)))

@ Other manipulations of interpolating polynomial, such as
differentiation or integration, are also relatively easy with
monomial basis representation 1
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Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Lagrange Interpolation

@ For given set of data points (¢;,v;),7=1,...,n, Lagrange
basis functions are defined by

Gty= ] t-t)/ JI G—t), j=1,....n
k=1,k+#j k=1,k+#j

@ For Lagrange basis,
1 iHi=y .
Ej(tz)—{ 0 ifits i,j=1,...,n

so matrix of linear system Ax = y is identity matrix

@ Thus, Lagrange polynomial interpolating data points (¢;, v;)
is given by

P_1(t) = y1l1(t) + yolo(t) + -+ - + ynulpn(t) 1
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Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Lagrange Basis Functions

@ Lagrange interpolant is easy to determine but more
expensive to evaluate for given argument, compared with
monomial basis representation

@ Lagrangian form is also more difficult to differentiate,

Integrate, etc. 1
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Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Example: Lagrange Interpolation

@ Use Lagrange interpolation to determine interpolating
polynomial for three data points (-2, —27), (0, —1), (1,0)

@ Lagrange polynomial of degree two interpolating three
points (t1,y1), (t2,¥2), (t3,y3) is given by pa(t) =
(t —t2)(t — t3) (t—1t1)(t —t3) (t —1t1)(t — t2)
+ +
Mty —ta)(tr —t3)  Plta—t1)(t2 —t3)  (ts — t1)(ts — to)

@ For these particular data, this becomes

t(t—1)
(—2)(=2-1)

P2 (t) = —27

1
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General Polynomial Interpolation

e Whether interpolating on segments or globally, error formula applies over
the interval.
If p(t) € P, and p(t;) = f(t;), 7 =1,...,n, then there
exists a 0 € [t1,t9,...,t,,t] such that
S
-0 = Tty -ty - 1,

n!
f"(9)

— nl Qn(t>a qn(t) = IP”

e We generally have no control over f"(f), so instead seek to optimize
choice of the ¢; in order to minimize

max t)]|.
telty tn] |qn( )|

e Such a problem is called a minimaz problem and the solution is given
by the ¢;s being the roots of a Chebyshev polynomial, as we will discuss
shortly.

e First, however, we turn to the problem of constructing p(t) € IP,,_1(%).






Constructing High-Order Polynomial Interpolants

 Lagrange Polynomials

p(t) = > fil(t)

[ (t.) = 0;
lj(ti) — t=t;, 1+ J(l) ij

0
Li(t) € IP,_1(t)

The /(f) polynomials are chosen so that p(t;) = f(t;) := f

The [(f)s are sometimes called the Lagrange cardinal functions.



Constructing High-Order Polynomial Interpolants

J Lagrange Polynomials
grange oy p(t) = > fil(t)
j=1
Zj(t) = 1 t=1;
lj(tl-) — t=t;, 1+

0
lj(t> € Pna(?)

() = (=t =) (=t D)~ 1) ()

e [;(t) is a polynomial of degree n — 1
o It is zero at t =1;, 1 #* 7.
e Choose C so that it is 1 at t = {;.



Constructing High-Order Polynomial Interpolants

e [;(t) is a polynomial of degree n — 1
o It is zero at t =1;, 1 #* 7.
e Choose C so that it is 1 at t = {;.

() = =0 82) (=t 1)~ i) (6 t)

C (tj —t1) (@5 —t2) -+ (F5 — tj—1) (5 — tj41) -+ (&5 — tn)



Constructing High-Order Polynomial Interpolants

e [;(t) is a polynomial of degree n — 1
o It is zero at t =1;, 1 #* 7.
e Choose C so that it is 1 at t = {;.

1 (t)

C = (tj—t)tj—t2) (5 —tj—1)E; —tjp1) - (& —tn)

g ti—t1) \t; —to ti—ti—1) \tj —tj41 ti—tn)

S =)~ 1) (b=t 1) () (6 )




Constructing High-Order Polynomial Interpolants
0 = (S8 (E8) - () () (=)
ti—t1) \t; — to ti—ti—1) \tj —tj41 ti —tn

 Although a bit tedious to do by hand, these formulas are relatively easy to
evaluate with a computer.

J So, to recap — Lagrange polynomial interpolation:

e Construct p(t) = > f;l;(t).
e [;(t) given by above.
e Error formula f(t) — p(t) given as before.

e Can choose t;’s to minimize error polynomial g, ().
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Lagrange Basis Functions, n=2 (linear)
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Lagrange Basis Functions, n=3 (quadratic)

[1 (%)

[3(t)




Comment on Costs

- Two parts:
ad A. Finding coefficients
4 B. Evaluating interpolant.



Costs for Lagrange Interpolation Fast evaluation...

e Consider the following scheme, which is O(n) per evaluation:

p(t) = le(t)fj (1)
Li(t) = ¢qi(t)r;(t) (2)
¢; = []] @ — =) (3)
i#J
gi(t) = (t=t)t—t2)---(t=tj1) = qa(t)- C=t1)  (4)
ri(t) = (E—ti)(t —tji2) - (E—tn) = (E =) - 1j0. (D)
— The cost of (1) is 2n.
— The cost of (2) is 2, for j=1..
— The cost of (3) is O(n?), but one-time only.
— The cost of (4) is 2, for j=1..
— The cost of (5) is 2, for j=1..

e The total evaluation cost for m > n evaluations is O(nm).

e There are no O(n?) costs.



Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Newton Interpolation

@ For given set of data points (¢;,v;), 7 =1,...,n, Newion
basis functions are defined by

7—1

) =][¢t-t), j=1....n

k=1

where value of product is taken to be 1 when limits make it
vacuous

@ Newton interpolating polynomial has form
pn_l(t) = I+ 5132(75 — t1) -+ $3(t — tl)(t — tg) +
e —|—£En(t — tl)(t — tg) “ee (t — tn—l)

@ Fori < j, m;(t;) =0, so basis matrix A is lower triangular,
where Q;j = T (tz) 1
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Polynomial Interpolation

Newton Basis Functions

Monomial, Lagrange, and Newton Interpolation
Orthogonal Polynomials
Accuracy and Convergence
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Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Newton Interpolation, continued

@ Solution x to system Ax = y can be computed by
forward-substitution in O(n?) arithmetic operations

@ Moreover, resulting interpolant can be evaluated efficiently
for any argument by nested evaluation scheme similar to
Horner's method

@ Newton interpolation has better balance between cost of
computing interpolant and cost of evaluating it

i
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Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Example: Newton Interpolation

@ Use Newton interpolation to determine interpolating
polynomial for three data points (-2, —27), (0, —1), (1,0)

@ Using Newton basis, linear system is

1 0 0 T U1
1 to — 11 0 Lol = Y2
1 t3—t1 (t3 —t1)(t3 —t2)| 73] Y3 |
@ For these particular data, system is
_1 0 O_ _561_ _—27_
1 2 0f [z = | —1
_1 3 3_ _£E3_ i 0_

whose solution by forward substitution is
r=|-27 13 —4]T, so interpolating polynomial is
p(t) = —27 +13(t + 2) — 4(t + 2)t 1
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Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Newton Interpolation, continued

@ Solution x to system Ax = y can be computed by
forward-substitution in O(n?) arithmetic operations

@ Moreover, resulting interpolant can be evaluated efficiently
for any argument by nested evaluation scheme similar to
Horner's method

@ Newton interpolation has better balance between cost of
computing interpolant and cost of evaluating it

i
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Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Newton Interpolation, continued

@ If p;(t) is polynomial of degree j — 1 interpolating j given
points, then for any constant =,

pj+1(t) = p;(t) + @141 (t)
Is polynomial of degree j that also interpolates same j
points

@ Free parameter x;,; can then be chosen so that p;1(¢)
interpolates v, 1,

Yj+1 — Pj(tjt1)
mj+1(tj+1)

@ Newton interpolation begins with constant polynomial
p1(t) = y1 interpolating first data point and then

successively incorporates each remaining data point into
interpolant | | | L

Ljt+1 —
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Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Divided Differences

@ Given data points (¢;,v;), 7 = 1,...,n, divided differences,
denoted by f| |, are defined recursively by

to,t3, ..., te| — flt1,to, ..., te_q
fl:t17t27 c 7tk] — f|: ] [ ]
tr — 11

where recursion begins with f[tx| =y, k=1,...,n

@ Coefficient of jth basis function in Newton interpolant is
given by

T = f[tl,tg, . ,tj]

@ Recursion requires O(n?) arithmetic operations to compute
coefficients of Newton interpolant, but is less prone to
overflow or underflow than direct formation of triangular |
Newton basis matrix I
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Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Orthogonal Polynomials

@ Inner product can be defined on space of polynomials on
interval |a, b] by taking

b
(p,g) = / p(t)g(tyw(t)dt

where w(t) is nonnegative weight function
@ Two polynomials p and q are orthogonal if (p,q) =0

@ Set of polynomials {p;} is orthonormal if

(pispj) = {

@ Given set of polynomials, Gram-Schmidt orthogonalization
can be used to generate orthonormal set spanning same
space |

1 ife=y
0 otherwise
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Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Orthogonal Polynomials, continued

@ For example, with inner product given by weight function
w(t) = 1 oninterval [—1, 1], applying Gram-Schmidt
process to set of monomials 1, ¢,¢2,¢3, ... yields Legendre
polynomials

1, t, (3t2—1)/2, (5¢3—3t)/2, (35t* —30t> +3)/8,

(63t> — 70t + 15¢) /8, ...

first n of which form an orthogonal basis for space of
polynomials of degree at most n — 1

@ Other choices of weight functions and intervals yield other
orthogonal polynomials, such as Chebyshev, Jacobi,
Laguerre, and Hermite i
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Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Orthogonal Polynomials, continued

@ Orthogonal polynomials have many useful properties

@ They satisfy three-term recurrence relation of form

Pr+1(t) = (awt + Br)pr(t) — Yepr—1(t)
which makes them very efficient to generate and evaluate

@ Orthogonality makes them very natural for least squares
approximation, and they are also useful for generating
Gaussian quadrature rules, which we will see later

i
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Monomial, Lagrange, and Newton Interpolation

Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Chebyshev Polynomials

@ kth Chebyshev polynomial of first kind, defined on interval
[_17 1] by
Ty (t) = cos(k arccos(t))

are orthogonal with respect to weight function (1 — 2)~1/2

@ First few Chebyshev polynomials are given by
1, t, 2t2—1, 4¢3 —3t, 8t*—8t2+1, 16t° — 203 +5¢, ...

@ Equi-oscillation property . successive extrema of 7}, are
equal in magnitude and alternate in sign, which distributes
error uniformly when approximating arbitrary continuous
function
i
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Chebyshev Polynomials Legendre Polynomials

To(z) = 1 Py(z) =1

Ti(x) = =z Pi(x) x

Ty(z) = 22° — 1 Py(z) = 1(32° — 1)

Ts(z) = 42° — 3w Py(z) = 4 (52° — 3x)

Ty(z) = Sz — 82* + 1 Py(z) = 1 (352" — 302° + 3)

Ts(z) = 162° — 202 + 5z Ps(z) = 1(632° — 702° + 15z)
To(x) = 322° — 48z* + 182 — 1 P(z) = & (2312° — 3152* + 10527

e Recursion relationships:

Chebyshev:  T,1(x) = 22T,(x) — T, 1(x)
Legendre: (n+ 1)Pyi1(x) = 2n+ DaxP,(z) — nP,_1(x).

N[
.

e Chebyshev polynomials orthogonal with respect to w(x) = (1 — 2?)~
e Legendre polynomials orthogonal with respect to w(z) = 1.

e Chebyshev polynomials important for minimax problems (e.g., minimize
maximum of p(t) — f(t)).

e Legendre polynomials important for Gauss quadrature rules.

e These and other orthogonal polynomials have other important uses.



Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Chebyshev Basis Functions

< interactive example >
i

Michael T. Heath Scientific Computing 31/56



Nth-Order Gauss Chebyshev Points

Matlab Demo: cheb_fun_demo.m

t=0:.01:(2*pi); t=t

n=9; z=cos(n*t);

plot3(x,y,z,'r', 'LineWidth',5);

0.8

0.6

0.4

0.2

-0.2

-0.4

0.6

-0.8

;s xX=cos(t); y=sin(t);

1 1 1 1 1 1 1
0.8 06 -04 02 0 02 04 06 08

Ty (x)

axis equal

Tn(x) = cos(ING)

r = cos(0)



Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Chebyshev Points

@ Chebyshev points are zeros of Ty, given by

2t — 1
tz-:c;os((z >7T>, 1=1,...,k

2k
or extrema of T}, given by

ti:cos(%), 1 =20,1,...,k

@ Chebyshev points are abscissas of points equally spaced
around unit circle iqRQ

™ 0
@ Chebyshev points have attractive properties for
interpolation and other problems
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Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Interpolating Continuous Functions

@ If data points are discrete sample of continuous function,
how well does interpolant approximate that function
between sample points?

@ If f is smooth function, and p,,_; Is polynomial of degree at
most n — 1 interpolating f at n points ¢4, ..., t,, then

) (6)

n!

ft) —pna(t) = (t=t)(t = t2) - (t —tn)

where 0 is some (unknown) point in interval [t1, %]

@ Since point ¢ is unknown, this result is not particularly
useful unless bound on appropriate derivative of f is
Known 1
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Monomial, Lagrange, and Newton Interpolation

Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Interpolating Continuous Functions, continued

o If [fM ()] < M forall t € [t1,t,], and
h:max{tiﬂ—ti: izl,...,n—l},then

MR"
téﬁi?nﬂf() Po-1(t)] = —

@ Error diminishes with increasing n and decreasing h, but
only if | f(™)(¢)| does not grow too rapidly with n

1
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Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

High-Degree Polynomial Interpolation

@ Interpolating polynomials of high degree are expensive to
determine and evaluate

@ |In some bases, coefficients of polynomial may be poorly
determined due to ill-conditioning of linear system to be
solved

@ High-degree polynomial necessarily has lots of “wiggles,’
which may bear no relation to data to be fit

@ Polynomial passes through required data points, but it may
oscillate wildly between data points

Not Always True! 1
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Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Convergence

@ Polynomial interpolating continuous function may not
converge to function as number of data points and
polynomial degree increases

@ Equally spaced interpolation points often yield
unsatisfactory results near ends of interval

@ If points are bunched near ends of interval, more
satisfactory results are likely to be obtained with
polynomial interpolation

@ Use of Chebyshev points distributes error evenly and
yields convergence throughout interval for any sufficiently
smooth function T
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Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Example: Runge’s Function

@ Polynomial interpolants of Runge’s function at equally
spaced points do not converge

() =1/(1 4 252)
“““ ps(t)
1 5 — - ])10(1‘)
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Monomial, Lagrange, and Newton Interpolation
Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Example: Runge’s Function

@ Polynomial interpolants of Runge’s function at Chebyshev
points do converge

T — f(t) =1/(1 +25¢%)
“““ ps(t)

1.5 ])10(1«-)

1.0

0.0

Chebyshev Convergence is exponential for smooth f(t). 1
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Important Polynomial Interpolation Result

If p(x) € P,—; and p(x;) = f(z;), j = 1,...,n, then there

exists a 0 € [r1, %9, ..., x,, x| such that
f@) —p@) = DO w)e —2) - (2 2)
7)) < ~rl@—m)@—2) (@ - )

where M = max ()]

e Note that f(z;) —p(x;) =0, j =1,...,n, as should be the case.

e The formula applies to extrapolation (z ¢ [z1,...,x,]) as well
as interpolation (z € [z1,...,2,]).

e The error is contolled by the maximum of |f"| on the interval of
interest, which is the smallest interval containing the x;s and z.

e Notice that if f € IP,, then f" is a constant.
In particular, if f(x) = 2", the error is simply

f@) =plr) = (& —z)(x—22) - ( = Z0).

e On [-1,1], the Chebyshev points minimize
q(x) = (v —x)(x—29) - (x — T).



An important polynomial interpolation result for f(x) € C":

If p(x) € P,_; and p(z;) = f(x;), s =1,...,n, then there
exists a 0 € [x1,x9,..., Ty, x| such that

)

n!

f(z) — p(x)

(x —x1)(x —29) -+ - (T — xp).

In particular, for linear interpolation, we have

"o
f(CL’) —p(aﬁ) — f 2( )(l' — 513’1)($ — 5172)
R h?| f"|
@)= p)l < o LI =

where the latter result pertains to x € [z1, z9].



Examples: Application of Error Formula, etc.

d What is the sum of the Lagrange cardinal functions at any given x?

J Assume that 0 < t, <t,<... <t <1 and that polynomial
interpolation is used to interpolate cos t on [0,1].

Show that for any 5 points on [0,1]

| cos(t) — p(t) | < .01



A Classic Interpolation Problem

* Q: What accuracy can we expect
when interpolating from the 41.00 1.69494 33514
. . . o)k 9490 34645
attached table, using piecewise .02 9486 11840
. . . «03 9481 651564
linear interpolation? .04 9476 94642
41.06 1.59472 00364
. .06 9466 82381
 A: What do we need to estimate .07 " 9461 40756
.08 9455 75554
the error? .09 | 9449 86844
e h 41.10 1.50443 74695
’ oll 9437 39181
e f 12 9430 80377
.. . 13 9423 98359
« Use finite difference to 14 9416 93207
estimate f’ ... 41.15 1.59409 65002
.16 9402 13830
17 9394 39775
.18 9386 42927
«19 9378 23376




Unstable and Stable Interpolating Basis Sets

d Examples of unstable bases are:

2 Monomials (modal): ¢, = x
2 High-order Lagrange interpolants (nodal) on uniformly-spaced points.

J Examples of stable bases are:
a Orthogonal polynomials (modal), e.g.,
2 Legendre polynomials: L,(x), or

2 bubble functions: @y (x) := Ly,4(X) — Ly4(X).

A Lagrange (nodal) polynomials based on Gauss quadrature points
(e.g., Gauss-Legendre, Gauss-Chebyshev, Gauss-Lobatto-Legendre,
etc.)

- Can map back and forth between stable nodal bases and
Legendre or bubble function modal bases, with minimal
information loss.



Unstable and Stable Interpolating Basis Sets

e Key idea for Chebyshev interpolation is to choose points that minimize
max |g,+1(x)| on interval Z := [—1,1].

i) = (x —xo)(z—21)... (¢ — zp)
= 2" + ¢, 12"+ .+

which is a monic polynomial of degree n + 1.

e The roots of the Chebyshev polynomial T, ,1(x) yield such a set of points
by clustering near the endpoints.



Lagrange Polynomials: Good and Bad Point Distributions

L AN LN

Ty

Uniform | Gauss-Lobatto-Legendre



Max |g| for Uniformn and Chebyshey Interpolants

Lbcb
Here, we see the max q,., for uniform B
(red) and Chebyshev points. g

Chebyshev converges much more rapidly. = -

10

20

30



Nth-order Gauss-Chebyshev Points

- Roots of Nth-order Chebyshev polynomial are projections of
equispaced points on the circle, starting with 6 = §6/2, then

6 =300/2,...,m-60/2.

N v
—-%__5____%\

_—'—’_'_'_’_’_F

+—— 00 =n/N

—I—‘_—_'—

NN

| <— 60/2

ti=(0:N)/(N); ti=pi*ti'; %%% Gauss Lobatto Chebyshev Point generator
ti=(0:N); ti=(ti+.5)/(N+1); ti=pi*ti'; %%% Gauss Chebyshev Point generator

xi=cos(ti); yi=sin(ti);

close all; figure('Color',[1.0 1.0 1.01);

for i=1:N+1;
plot([xi(i) xi(i)],[0 yi(i)], 'ko-', 'LineWwidth',2); hold
plot ([0 xi(i)],[0 yi(i)]l, ' 'ko-");

end;

N=100; %% Draw Circle and x-axis:
ti=(0:N)/(N); ti=pi*ti'; % theta in [0,pi]
xi=cos(ti); yi=sin(ti); plot(xi,O*xi,'k-',xi,yi,'k-");

on;



N+1 Gauss-Lobatto Chebyshev Points

d N+1 GLC points are projections of equispaced points on the
circle, starting with 6 = 0, then 6 = #/N, 2%/N, ... , k#/N, ... , 7.

+—— 00 =n/N
LA
Amax ~ - Amin ~ 53



Interpolation Testing

e Try a variety of methods for a variety of functions.
e Inspect by plotting the function and the interpolant.

e Compare with theoretical bounds. (Which are accurate!)



Typical Interpolation Experiment

o Given f(t), evaluate f; := f(¢;),7=1,...,n.

e Construct interpolant:
p(t) = > pjo;(t).
j=1

~

e Evaluate p(t) at t;, i =1,...,m, m > n. (Fine mesh, for plotting, say.)

e To check error, compare with original function on fine mesh, .
ei = p(t;) — [(&)

6l’l’laX

(Remember, it’s an experiment.)



Preceding description is for one trial.
Repeat for increasing n and plot ey, (1) on a log-log or semilog plot.
Compare with other methods and with theory:

— methods — identify best method for given function / requirements

— theory — verify that experiment is correctly implemented

Repeat with a different function.



Summary of Key Theoretical Results

e Piecewise linear interpolation:

h2
max |p_f| S _M7

te[a,b] 8

e Polynomial interpolation through

a — <
mmax p— f] <

<

M := maXgeqy | f"(0) |

.....

n points:

n!

Y

hn
EM’ (for t € [a,b]),

with M := max |f"(9)|.

0<|a,b,t]

~Here, gu(0) == (0 —t)(0 —ta) -+ (8 —t,).

— The first result also holds true for extrapolation, i.e., t¢|a,b].



e Natural cubic spline (s"(a) = s"(b) = 0):

max |p — f| < Ch®M, M—max\”()\

teab] 0c(a.b)

unless f”(a) = f”(b) = 0, or other lucky circumstances.

e Clamped cubic spline (s'(a) = f'(a), s'(b) = f'(b)):
max |p — f| < Ch*M, M = max |f™(9)].

tea,b] fcla,b]
e Nyquist sampling theorem:
Roughly: The mazimum frequency that can be resolved with n points is N = n/2.

There are other conditions, such as limits on the spacing of the sampling.



e Methods:

— piecewise linear
— polynomial on uniform points
— polynomial on Chebyshev points

— natural cubic spline

o Tests:
— et
_ pcost
— sint on [0, 7]
— sint on [0, 7]
— sin 15¢ on [0, 27|
— e on [0, 27]
— Runge function: (= on [0, 1]

— Runge function: mﬁ on [—1,1]

— Semi-circle: v/1 —#2 on [~1, 1]
— Polynomial: "

— Extrapolation

— Other

interp_test.m interp_test _runge.m



e Methods:

— piecewise linear
— polynomial on uniform points
— polynomial on Chebyshev points

— natural cubic spline

e Tests:

— et

_ pcost
— sint on [0, 7]

— sint on [0, 7]

— sin 15¢ on [0, 27|
— e on [0, 27]

— Runge function: (= on [0, 1]

— Runge function: mﬁ on [—1,1]

— Semi-circle: v/1—t2 on [—1,1]

— Polynomial: "

error

— Extrapolation
— Other

interp_test.m interp_test _runge.m

Yarious Interpolants
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Monomial, Lagrange, and Newton Interpolation

Polynomial Interpolation Orthogonal Polynomials
Accuracy and Convergence

Taylor Polynomial

@ Another useful form of polynomial interpolation for smooth
function f is polynomial given by truncated Taylor series

pult) = F@)+7/@) -0+ T (g LD gy

@ Polynomial interpolates f in that values of p,, and its first n
derivatives match those of f and its first n derivatives
evaluated at t = a, so p,(t) is good approximation to f(¢)
for t near a

@ We have already seen examples in Newton’s method for
nonlinear equations and optimization

i
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Piecewise Polynomial Interpolation
Hermite Cubic Interpolation
Piecewise Polynomial Interpolation Cubic Spline Interpolation

Piecewise Polynomial Interpolation

@ Fitting single polynomial to large number of data points is
likely to yield unsatisfactory oscillating behavior in
interpolant

@ Piecewise polynomials provide alternative to practical and
theoretical difficulties with high-degree polynomial
interpolation

@ Main advantage of piecewise polynomial interpolation is
that large number of data points can be fit with low-degree
polynomials

@ In piecewise interpolation of given data points (#;, v;),
different function is used in each subinterval [t;, ;1]

@ Abscissas t; are called knots or breakpoints, at which
interpolant changes from one function to another 1
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Piecewise Polynomial Interpolation
Hermite Cubic Interpolation
Piecewise Polynomial Interpolation Cubic Spline Interpolation

Piecewise Interpolation, continued

@ Simplest example is piecewise linear interpolation, in
which successive pairs of data points are connected by
straight lines

@ Although piecewise interpolation eliminates excessive
oscillation and nonconvergence, it appears to sacrifice
smoothness of interpolating function

@ We have many degrees of freedom in choosing piecewise
polynomial interpolant, however, which can be exploited to
obtain smooth interpolating function despite its piecewise
nature

Michael T. Heath Scientific Computing
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Polynomial Interpolation

d Two types: Global or Piecewise

J Two scenarios:
d A: points are given to you
a1 B: you choose the points

- Case A: piecewise polynomials are most common — STABLE.

- Piecewise linear
a Splines
d Hermite (matlab “pchip” — piecewise cubic Hermite int. polynomial)

- Case B: high-order polynomials are OK if points chosen wisely
a Roots of orthogonal polynomials
1 Convergence is exponential: err ~ Ce“", instead of algebraic: err~Cn™*



Polynomial Interpolation Example

1 Given the table below,

T | Jj
0.6 | 1.2
0.8 | 2.0
1.0 | 2.4

estimate f(x=0.75).



Polynomial Interpolation Example

1 Given the table below,

T | Jj
0.6 | 1.2
0.8 | 2.0
1.0 | 2.4

estimate f(x=0.75).
d A: 1.8 --- You've just done (piecewise) linear interpolation.

- Moreover, you know the error is < (0.2)°f’ / 8.

4 Estimate the error... _ _
quick_spline.m



Piecewise Polynomial Interpolation
Hermite Cubic Interpolation
Piecewise Polynomial Interpolation Cubic Spline Interpolation

Hermite Interpolation

@ In Hermite interpolation, derivatives as well as values of
interpolating function are taken into account

@ Including derivative values adds more equations to linear
system that determines parameters of interpolating
function

@ To have unique solution, number of equations must equal
number of parameters to be determined

@ Piecewise cubic polynomials are typical choice for Hermite
interpolation, providing flexibility, simplicity, and efficiency

i
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Piecewise Polynomial Interpolation
Hermite Cubic Interpolation
Piecewise Polynomial Interpolation Cubic Spline Interpolation

Hermite Cubic Interpolation

@ Hermite cubic interpolant is piecewise cubic polynomial
interpolant with continuous first derivative

@ Piecewise cubic polynomial with n knots has 4(n — 1)
parameters to be determined

@ Requiring that it interpolate given data gives 2(n — 1)
equations

@ Requiring that it have one continuous derivative gives n — 2
additional equations, or total of 3n — 4, which still leaves n
free parameters

@ Thus, Hermite cubic interpolant is not unique, and
remaining free parameters can be chosen so that result
satisfies additional constraints 1
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Piecewise Polynomial Interpolation
Hermite Cubic Interpolation
Piecewise Polynomial Interpolation Cubic Spline Interpolation

Cubic Spline Interpolation

@ Spline is piecewise polynomial of degree k thatis k — 1
times continuously differentiable

@ For example, linear spline is of degree 1 and has 0
continuous derivatives, i.e., it Is continuous, but not
smooth, and could be described as “broken line”

@ Cubic spline is piecewise cubic polynomial that is twice
continuously differentiable

@ As with Hermite cubic, interpolating given data and
requiring one continuous derivative imposes 3n — 4
constraints on cubic spline

@ Requiring continuous second derivative imposes n — 2
additional constraints, leaving 2 remaining free parameters |l
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Piecewise Polynomial Interpolation
Hermite Cubic Interpolation
Piecewise Polynomial Interpolation Cubic Spline Interpolation

Cubic Splines, continued

Final two parameters can be fixed in various ways
@ Specify first derivative at endpoints ¢; and t,,

@ Force second derivative to be zero at endpoints, which
gives natural spline

@ Enforce “not-a-knot” condition, which forces two
consecutive cubic pieces to be same

@ Force first derivatives, as well as second derivatives, to
match at endpoints ¢; and ¢,, (if spline is to be periodic)

Michael T. Heath Scientific Computing
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Piecewise Polynomial Interpolation
Hermite Cubic Interpolation
Piecewise Polynomial Interpolation Cubic Spline Interpolation

Example: Cubic Spline Interpolation

@ Determine natural cubic spline interpolating three data
points (tz', yi), 1=1,2,3

@ Required interpolant is piecewise cubic function defined by
separate cubic polynomials in each of two intervals [t1, t2]
and [tg, tg]

@ Denote these two polynomials by
p1(t) = a1 + ast + ast? + agt?

pa(t) = B1 + Pat + Bat? + But?

@ Eight parameters are to be determined, so we need eight
equations 1
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Cubic Spline Formulation — 2 Segments

8 Unknowns el
pi(t) = oq + ast + a3t2 + ayt? D T
pa(t) = Bi + Pot + Bst® + Bat® | 1
8 Equations /
Interpolatory Continuity of Derivatives 05t ;
pi(t) = n pi(ta) = py(to) f,a"a'
pi(t2) = o pi(t2) = ph(t2) ol d
pallz) = v End Conditions Y
Palfa) = vs pi(t1) = 0 05t
pa(ts) = 0
(Natural Spline) at
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Note that the spline function in MATLAB computes a not-a-knot spline by default. If X = [0 1
34l andY = [0 0 2 2], the not-a-knot spline can be computed and plotted in MATLAB with
plot (x,ppval (spline (X,Y),x)). Specifying additional data points at the beginning and end of
the interval will give a clamped spline with those extra values as the slopes at the endpoints of
the intervals. The command plot (x,ppval (spline (X, [0 Y 0]),x)) would give the clamped
spline plotted here with f/(0) = f/(4) = 0.
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Some Cubic Spline Properties

Continuity
2 1stderivative: continuous
2 2nd derivative: continuous

“Natural Spline” minimizes integrated curvature:

over all twice-differentiable f(x) /a:n |S”(a:)|2d:13 < [Tn |f//(x)|2 dr
. - 1 R

passing through (x;f,), j=1,...,n.

Robust / Stable (unlike high-order polynomial interpolation)
Commonly used in computer graphics, CAD software, etc.
Usually used in parametric form (DEMO)

There are other forms, e.g., tension-splines, that are also useful.
For clamped boundary conditions, convergence is O(h#)

For small displacements, natural spline is like a physical spline.
(DEMO)






Piecewise Polynomial Interpolation
Hermite Cubic Interpolation
Piecewise Polynomial Interpolation Cubic Spline Interpolation

Piecewise Polynomial Interpolation

@ Fitting single polynomial to large number of data points is
likely to yield unsatisfactory oscillating behavior in
interpolant

@ Piecewise polynomials provide alternative to practical and
theoretical difficulties with high-degree polynomial
interpolation

@ Main advantage of piecewise polynomial interpolation is
that large number of data points can be fit with low-degree
polynomials

@ In piecewise interpolation of given data points (#;, v;),
different function is used in each subinterval [t;, ;1]

@ Abscissas t; are called knots or breakpoints, at which
interpolant changes from one function to another 1
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Piecewise Polynomial Interpolation
Hermite Cubic Interpolation
Piecewise Polynomial Interpolation Cubic Spline Interpolation

Piecewise Interpolation, continued

@ Simplest example is piecewise linear interpolation, in
which successive pairs of data points are connected by
straight lines

@ Although piecewise interpolation eliminates excessive
oscillation and nonconvergence, it appears to sacrifice
smoothness of interpolating function

@ We have many degrees of freedom in choosing piecewise
polynomial interpolant, however, which can be exploited to
obtain smooth interpolating function despite its piecewise
nature
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Piecewise Polynomial Bases: Linear and Quadratic

i
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Figure 2: Examples of one-dimensional piecewise linear (left) and piecewise quadratic (right) La-
grangian basis functions, ¢o(x) and @s(x), with associated element support, {2, e =1... . E.



Piecewise Polynomial Interpolation
Hermite Cubic Interpolation
Piecewise Polynomial Interpolation Cubic Spline Interpolation

Cubic Spline Interpolation

@ Spline is piecewise polynomial of degree k thatis k — 1
times continuously differentiable

@ For example, linear spline is of degree 1 and has 0
continuous derivatives, i.e., it Is continuous, but not
smooth, and could be described as “broken line”

@ Cubic spline is piecewise cubic polynomial that is twice
continuously differentiable

@ As with Hermite cubic, interpolating given data and
requiring one continuous derivative imposes 3n — 4
constraints on cubic spline

@ Requiring continuous second derivative imposes n — 2
additional constraints, leaving 2 remaining free parameters |l
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Piecewise cubics:

o Interval Z, = [z;_1,24], j

pi(z) € P3(x) onZ;

—1,...

pi(x) = a; + bz + c;a° + d;z°

e 4n unknowns

pj(fﬂj—ﬁ — fj—1, Jg=1,...

pj(.CE'j) = fja j:].,...,n

pi(x;) = Piale;), j=1,...

pj(x;) = pin(z;), j=1,...

e 4n — 2 equations

,

Spline
conditions



Piecewise Polynomial Interpolation
Hermite Cubic Interpolation
Piecewise Polynomial Interpolation Cubic Spline Interpolation

Cubic Splines, continued

Final two parameters can be fixed in various ways
@ Specify first derivative at endpoints ¢; and t,,

@ Force second derivative to be zero at endpoints, which
gives natural spline

@ Enforce “not-a-knot” condition, which forces two
consecutive cubic pieces to be same

@ Force first derivatives, as well as second derivatives, to
match at endpoints ¢; and t,, (if spline is to be periodic)

® Force first derivatives at endpoints to match y’(x) — clamped spline.

i
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Piecewise Polynomial Interpolation
Hermite Cubic Interpolation
Piecewise Polynomial Interpolation Cubic Spline Interpolation

Example: Cubic Spline Interpolation

@ Determine natural cubic spline interpolating three data
points (tz', yi), 1=1,2,3

@ Required interpolant is piecewise cubic function defined by
separate cubic polynomials in each of two intervals [t1, t2]
and [tg, tg]

@ Denote these two polynomials by
p1(t) = a1 + ast + ast? + agt?

pa(t) = B1 + Pat + Bat? + But?

@ Eight parameters are to be determined, so we need eight
equations 1
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Cubic Spline Formulation — 2 Segments

8 Unknowns el
pi(t) = oq + ast + a3t2 + ayt? D T
pa(t) = Bi + Pot + Bst® + Bat® | 1
8 Equations /
Interpolatory Continuity of Derivatives 05t ;
pi(t) = n pi(ta) = py(to) f,a"a'
pi(t2) = o pi(t2) = ph(t2) ol d
pallz) = v End Conditions Y
Palfa) = vs pi(t1) = 0 05t
pa(ts) = 0
(Natural Spline) at
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Note that the spline function in MATLAB computes a not-a-knot spline by default. If X = [0 1
34l andY = [0 0 2 2], the not-a-knot spline can be computed and plotted in MATLAB with
plot (x,ppval (spline (X,Y),x)). Specifying additional data points at the beginning and end of
the interval will give a clamped spline with those extra values as the slopes at the endpoints of
the intervals. The command plot (x,ppval (spline (X, [0 Y 0]),x)) would give the clamped
spline plotted here with f/(0) = f/(4) = 0.
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Some Cubic Spline Properties

Continuity
2 1stderivative: continuous
2 2nd derivative: continuous

“Natural Spline” minimizes integrated curvature:

over all twice-differentiable f(x) /a:n |S”(a:)|2d:13 < [Tn |f//(x)|2 dr
. - 1 R

passing through (x;f,), j=1,...,n.

Robust / Stable (unlike high-order polynomial interpolation)
Commonly used in computer graphics, CAD software, etc.
Usually used in parametric form (DEMO)

There are other forms, e.g., tension-splines, that are also useful.
For clamped boundary conditions, convergence is O(h#)

For small displacements, natural spline is like a physical spline.
(DEMO)






Piecewise Polynomial Interpolation
Hermite Cubic Interpolation
Piecewise Polynomial Interpolation Cubic Spline Interpolation

Hermite Cubic vs Spline Interpolation

@ Choice between Hermite cubic and spline interpolation
depends on data to be fit and on purpose for doing
Interpolation

@ If smoothness is of paramount importance, then spline
interpolation may be most appropriate

@ But Hermite cubic interpolant may have more pleasing
visual appearance and allows flexibility to preserve
monotonicity if original data are monotonic

@ In any case, it is advisable to plot interpolant and data to
help assess how well interpolating function captures
behavior of original data

i
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Piecewise Polynomial Interpolation
Hermite Cubic Interpolation
Piecewise Polynomial Interpolation Cubic Spline Interpolation

Hermite Cubic vs Spline Interpolation

8¢

Matlab “pchip()” function

i
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Parametric Interpolation

- It's clear we can interpolate this: But what about this?

though maybe not with great accuracy.

It’s not even a function!



Parametric Interpolation

T'wo common use cases:

e y # f(x) (y(x) is not a function)
e Multidimensional interpolation: f = f(z,y), z,y € €

L WL,




o Ify # f(z)

e Define a progress variable that is monotonically increasing.

e Build a table: i | =y | vy
L |z |y
2 | x| Yo
3

r3 | Ys

n | Ty | Yn
e Construct two interpolants:

p.(t) = interpolant of x(t), p.(t;) = z;
py(t) = interpolant of y(t), p,(t;) = v;.

e Then, plot (z;,y;) and (p,py)-



Parametric Interpolation

d Important when y(x) is not a function of x; then, define [ x(t), y(t) ]
such that both are (preferably smooth) functions of t.

d Example 1: a circle.

%% LAZY WAY TO APPROXIMATE
15f . %% PERIODIC SPLINE

I 15:2_ t
05| / : t 3 \1. - ;

j i tt=-2:.01:2;
xx=spline(t,x,tt);
yy=spline(t,y,tt);

-7:8; t=t';

[ 11 -1-111-1-11]; x=[ x x ];
[-111-1-111-11; vy=[lvyy]l:

hold off;

plot(xx,yy, ' 'b-
plot(x,y,'ro', 'Linewidth',2.0);

axis equal
axis ([-1.8

1.

', 'LineWwidth',1.0);

8 -1.8 1.8 1)

hold on;



Parametric Interpolation: Example 2

7 (OO & o OO d Suppose we want to
@Q/ % C(?O/@ ?(p/ @% f:)y/ approximate a cursive letter.
H IS KL M . o ovenr
e - e se (minimally curvy) splines,
@/V@7 /()/) Q /{)/{ @9\/& parameterized.
UYWAY, "
7 " @
aécr/e//r/ét/é/mnaﬁ

gr s lwfuwx/y%

12345667890



Parametric Interpolation: Example 2

J Once we have our (x;, y;)
pairs, we still need to pick t; .

J One possibility: t; =1, but
usually it’s better to
parameterize by arclength, if x
and y have the same units.

———— W An approximate arclength is:

S, = Z de, dSZ' = HXZ — Xi_lHQ
7=0

\45

- Note — can also have Lagrange
parametric interpolation...but
splines are generally preferable




Parametric Interpolation: Example 2

3_5_ T T T T

|
|
|' |
|+ l:il_:l
|
\ !
\ J
\ J
y
™ - ~
=
ll'.
/
J
llr
-
K
—_— r"’)
- =
|"':; == -
ﬂ e
L T
. T,
" » T
S -
| | |

| |
0 0.5 1 1.5

Pseudo-Arclength-Based

|
2 2.5 3 3.5
Index-Based




Multidimensional Case

e Start with f(r,s), r, s € [-1,1]%
e Suppose we know function values f;; = f(7i,5;).

e Construct Lagrange interpolant,

p(r,s) € ]Pn 1(7“ s)

ZZ Li(r) () fig, Li(re) = G

J=1 =1

If r; and s; are Gauss quadrature points (e.g., zeros of an
orthogonal polynomial such as Chebyshev or Legendre),
interpolation is stable.

T COS OY

e Example: f =e



Parametric Interpolation

e Define

r = ZZ[

3121

B ED W

7=1 1=1

o Plot (z,y,p) = (x(r,s), y(r,s), p(r,s) ).

CU@]»

yzg



Fast Evaluation:

e Suppose:

71, T2, ... ,Tn]T (on GLC points)
(51, S9, ..., sn]”

= linspace(—1,1,m >n), §=Tr.

o
|

e Define x, y, f € R™"™: source interpolation nodes.

~

e Define x, y, f € R™™: target interpolation points.
e It appears we need m? interrogations of ;(r)l;(s), i,7 € [1,...,n]*

e However, tensor-product forms allow this to be done in O(nm?) time,
rather than O(n?m?) time.



e Form Jz’j = l](ﬂ)
e Then,

Tij = Zzlp(fi)lq(gj)qu

q=1 p=1

— Z Z Jip Lpgq Jg;

g=1 p=1

e In matrix form, X = JXJ7.

e In vector form, x = (J ® J)x.

2

o A lot faster than evaluating m~ matriz exponentials!



Multidimensional Interpolation

- Multidimensional interpolation has many applications in computer
aided design (CAD), partial differential equations, high-parameter

data fitting/assimilation.

 Costs considerations can be dramatically different (and of course,

higher) than in the 1D case.

2D basis function, N=10

Y



Multidimensional Interpolation

 There are many strategies for interpolating f(x,y) [ or f(x,y,z), etc.].

- One easy one is to use tensor products of one-dimensional
interpolants, such as bicubic splines or tensor-product Lagrange

polynomials. o
Uoq 14 U4 U3q Mag pn(s, t> - Z Z lZ(S> lj (t) fij
16— © o9 , .
1=0 5=0
RGN 1 sl
G2 gl glangla
Goigi OUZI OU310U41
_(ooogtio  glfao  4B3045t4o
1 I 2D Example: n=2




