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0 Numerical Integration
e Numerical Differentiation

e Richardson Extrapolation
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Main Ideas

J Quadrature based on polynomial interpolation:
3 Methods:
2 Method of undetermined coefficients (e.g., Adams-Bashforth)
a Lagrangian interpolation

4 Rules:
2 Midpoint, Trapezoidal, Simpson, Newton-Cotes
4 Gaussian Quadrature

- Quadrature based on piecewise polynomial interpolation
2 Composite trapezoidal rule
a Composite Simpson
3 Richardson extrapolation

J Differentiation
d Taylor series / Richardson extrapolation
2 Derivatives of Lagrange polynomials
3 Derivative matrices



Quadrature Examples

b
o7 — / eCOST g

Differential equations:

u(x) = Zuﬂj(l‘) c X"

Find u(x) such that

r(r) = j—z — f(x) L XV



Numerical Integration Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Integration

@ For f: R — R, definite integral over interval [a, 0]

b
Mﬂzfﬂmm

is defined by limit of Riemann sums

n

Ry =Y (wit1 — i) f(&)

1=1

@ Riemann integral exists provided integrand f is bounded
and continuous almost everywhere

@ Absolute condition number of integration with respect to
perturbations in integrand is b — a

@ Integration is inherently well-conditioned because of its

smoothing effect I
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Numerical Integration Quadrature Rules
Adaptive Quadrature
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Numerical Quadrature

@ Quadrature rule is weighted sum of finite number of
sample values of integrand function

@ To obtain desired level of accuracy at low cost,

@ How should sample points be chosen?
e How should their contributions be weighted?

@ Computational work is measured by number of evaluations
of integrand function required

1
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Numerical Integration Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Quadrature Rules

@ An n-point quadrature rule has form
Qu(f) =D wi f(x)
1=1

@ Points z; are called nodes or abscissas

@ Multipliers w; are called weights

@ Quadrature rule is

@ openifa<xiandzx, <b
@ closed ifa=xyand z,, =0
® (Can also have (XX, ... X,) <a<Db (Adams-Bashforth timestepper@
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Numerical Integration Quadrature Rules
Adaptive Quadrature
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Quadrature Rules, continued

@ Quadrature rules are based on polynomial interpolation
@ Integrand function f is sampled at finite set of points
@ Polynomial interpolating those points is determined

@ Integral of interpolant is taken as estimate for integral of
original function

@ In practice, interpolating polynomial is not determined
explicitly but used to determine weights corresponding to
nodes

@ If Lagrange is interpolation used, then weights are given by

b
i = fz , ’:1,...,77/
w /a (), i ;
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Numerical Integration Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Method of Undetermined Coefficients

@ Alternative derivation of quadrature rule uses method of
undetermined coefficients

@ To derive n-point rule on interval [a, b], take nodes
x1,...,Ty as given and consider weights wq, ..., w, as
coefficients to be determined

@ Force quadrature rule to integrate first n polynomial basis
functions exactly, and by linearity, it will then integrate any
polynomial of degree n — 1 exactly

@ Thus we obtain system of moment equations that
determines weights for quadrature rule

T
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I(f)

Quadrature Overview

b n
= / f(t)dt =~ Z w; fi, =:
¢ i=1

Qn(f)

e Idea 1s to minimize the number of function evaluations.

e Small n 1s good.

e Several strategies:

global rules
composite rules
composite rules + extrapolation

adaptive rules



Global (Interpolatory) Quadrature Rules

e Generally, approximate f(¢) by polynomial interpolant, p(t).

ft) = p(t) = Zli(t) fi

1) = [ jwyde ~ / p(t)dt = Qu(f)

a

Q) = / (ih(t)ﬁ-) ot = nl ( / o)) f; = wa

1=1

e We will see two types of global (interpolatory) rules:

— Newton-Cotes — interpolatory on uniformly spaced nodes.

— Gauss rules — interpolatory on optimally chosen point sets.



Examples
e Midpoint rule: [;(t) =1

w = /abll(t)dt—/abldt_(b—a)

e Trapezoidal rule:

wz_/ab lo(t)dt = /ab (Z:Z) (2:2) dt = g(b—a)

e These are the Newton-Cotes quadrature rules for n=1, 2, and 3,
respectively.

— The midpoint rule is open.

— Trapezoid and Simpson’s rules are closed.



Finding Weights: Method of Undetermined Coefficients

Example 1: Find w; for [a,b] = [1,2], n = 3.

e First approach: f = 1, t, t°

3
(1) = ) w-1=1
1=1

2

3
1
It) = > wi-t; = §t2
1=1

1

2

3
1
I(t?) = ) wi-t] = gt?’
1=1

1

Results in 3 x 3 matrix for the w;s.



Finding Weights: Method of Undetermined Coefficients

e Second approach: Choose f so that some of the coefficients multiplying
the w;s vanish.

I = w1(1—g)(1—2> _ [(t—g)(t—zw

I = wz(g—n(g—m _ /1(t—1)(t—2)dt

Iy - w3(2—1)(2—§) _ /1@—1)(75—;)6175

Corresponds to the Lagrange interpolant approach.



Method of Undetermined Coefficients

Example 2: Find w; for [a,b] = [0,1], n = 3, but using f; = f(t;) = f(3),
with ¢ = -2, -1, and 0. (The ¢;’s are outside the interval (a,b).)

e Result should be exact for f(t) € Py, Py, and IPs.
o Take f=1, f=t, and f=t>.

Zwi - 1/11dt
0

1 1
—2’(1)_2 — W, = = = / tdt
0

2
1 1
qw_9 + w_qy = = = / 2 dt
3 0
e Find
5 16 23
W_g = — w_p = — — wy = —.
27 12 ! 12 D

e This example is useful for finding integration coefficients for explicit time-
stepping methods that will be seen in later chapters.



Numerical Integration Quadrature Rules
Adaptive Quadrature
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Example: Undetermined Coefficients

@ Derive 3-point rule Qg(f) = wlf(ail) + wzf(xz) + wgf(a’ig)
on interval [a, b] using monomial basis

@ Take r1 = a, 9 = (a + b)/2, and x3 = b as nodes
@ First three monomials are 1, z, and z?

@ Resulting system of moment equations is

b
wy-1l+wy-1+wz-1 = /1da::x|2:b—a
CLb
Wi -a+ws - (a+b)/2+ws-b — /xdx:(x2/2)|g:<b2—a2)/2
b
wi-a®+ws- (a+0)/2)2 +ws- 12 = /aﬁ2dx:(x3/3)|gz(b3—a3)/3

i
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Numerical Integration Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Example, continued

@ |In matrix form, linear system is

1 1 1 w1 b—a
a (a+b)/2 b |wa| = |(b*—a?)/2
@ ((a+b)/2? ] [ws] |F )3,

@ Solving system by Gaussian elimination, we obtain weights

b—a 2(b—a) b—a
) w2 = ) w3 =
6 3 6

w1 =

which is known as Simpson’s rule
T
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Numerical Integration Quadrature Rules
Adaptive Quadrature
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Method of Undetermined Coefficients

@ More generally, for any n and choice of nodes z1, ..., z,,
Vandermonde system

1 1 - 1 | Jw] [ b—a |
T Ty - Tn wa| (b% — a?)/2
2y wy e ap | wa] (07 —a")/n

determines weights w1, ..., w,

i
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Stability of Quadrature Rules

@ Absolute condition number of quadrature rule is sum of
magnitudes of weights,

n

> Jwl

1=1

@ If weights are all nonnegative, then absolute condition
number of quadrature rule is b — a, same as that of
underlying integral, so rule is stable

@ If any weights are negative, then absolute condition
number can be much larger, and rule can be unstable

T
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Conditioning

e Absolute condition number of integration:

b
1) = [ s
1) = | e

1(f) = 1(f)

b A A
/(f—f)dt‘ < —al lIf - fllx

e Absolute condition number is |b — al.



Conditioning

e Absolute condition number of quadrature:

Qu() = Qu(H)| = X wi (fi=Fi)| < |3 wi| max|fi -/
1=1 1=1
< > wifllf = il
1=1

C = |uw
i=1
o If Q,(f) is interpolatory, then > w; = (b—a):
n b
Qu(1) = S w1 E/ Ldt = (b—a).
i=1 @

o If w; >0, then C = (b—a).

e Otherwise, C' > (b — a) and can be arbitrarily large as n — oc.




Numerical Integration Quadrature Rules
Adaptive Quadrature
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Newton-Cotes Quadrature

Newton-Cotes quadrature rules use equally spaced nodes in
interval [a, D]

@ Midpoint rule

@ Jrapezoid rule

@ Simpson’s rule
s() =5 (@ +ar (“57) + 1)
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Numerical Integration Quadrature Rules
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Example: Newton-Cotes Quadrature

Approximate integral I(f) = fol exp(—x?) dx ~ 0.746824

M(f) = (1—-0)exp(—1/4)~ 0.778801
T(f) = (1/2)lexp(0)+ exp(—1)] =~ 0.683940
S(f) = (1/6)[exp(0) +4dexp(—1/4) + exp(—1)] = 0.747180

|
I
0.0 0.5 1.0

< interactive example >

i
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Error Estimation

@ Expanding integrand f in Taylor series about midpoint
m = (a + b)/2 of interval |a, b],

F@) = fm)+ f(m)(e—m)+ L ”(zm) ( — m)?
1" (4)
+f ém)(x—m)ng f 2im)($_m)4+---
@ Integrating from a to b, odd-order terms drop out, yielding
/! (4)
105) = fm)e-a)+ 26— L0y

= M)+ E(f)+ F(f) + -+

where E(f) and F'(f) represent first two terms in error
expansion for midpoint rule I
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Numerical Integration Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Error Estimation, continued

@ If we substitute x = a and x = b into Taylor series, add two
series together, observe once again that odd-order terms
drop out, solve for f(m), and substitute into midpoint rule,
we obtain

I(f) =T(f) = 2E(f) —AF(f) — - - -

@ Thus, provided length of interval is sufficiently small and
£ is well behaved, midpoint rule is about twice as
accurate as trapezoid rule

@ Halving length of interval decreases error in either rule by
factor of about 1/8
i
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Numerical Integration Quadrature Rules
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Error Estimation, continued

@ Difference between midpoint and trapezoid rules provides
estimate for error in either of them

T(f) = M(f) = 3E(f) +5F(f) + -

SO

@ Weighted combination of midpoint and trapezoid rules
eliminates E(f) term from error expansion

2 1 2

I(f) = §M(f)+§T(f)—§F(f)+-~
= S - SF() -+

which gives alternate derivation for Simpson’s rule and

estimate for its error I
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Numerical Integration Quadrature Rules
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Example: Error Estimation

@ We illustrate error estimation by computing approximate
value for integral fol z?dr =1/3

M(f) = (1-0)(1/2)* =1/4
T(f) = (O +1%) =1/2
E(f) ~ (T(f)—M(f))/3=(1/4)/3=1/12
@ Errorin M(f) is about 1/12, error in T'(f) is about —1/6
@ Also,
S(f) = @2/3)M(f)+(1/3)T(f) = (2/3)(1/4)+(1/3)(1/2) = 1/3
which is exact for this integral, as expected T
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Example

flx) = 2 — a?
I(f):/f x—2x—;11:3%.
M(f) = _ 2.2 =4 (Jerror|=2/3)
T(f) = z.fH); IO 9 (lerror|=4/3)
tegra _ vidpont e
f(x) | f(x)
/ /

Trapezoidal Rule

-1

+1

-1

+1

-1

 Error for midpoint rule is generally 2 that of frapezoidal rule.

+1
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Accuracy of Quadrature Rules

@ Quadrature rule is of degree d if it is exact for every
polynomial of degree d, but not exact for some polynomial
of degree d + 1

@ By construction, n-point interpolatory quadrature rule is of
degree at least n — 1

@ Rough error bound

1(F) = Qu(N) < 3" o

where h = max{x;11 —x; : i =1,...,n — 1}, shows that
Qn(f) = I(f) as n — oo, provided f(™ remains well
behaved

@ Higher accuracy can be obtained by increasing n or by |
decreasing h 1
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Numerical Integration Quadrature Rules
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Accuracy of Newton-Cotes Quadrature

@ Since n-point Newton-Cotes rule is based on polynomial
interpolant of degree n — 1, we expect rule to have degree
n—1

@ Thus, we expect midpoint rule to have degree 0, trapezoid
rule degree 1, Simpson’s rule degree 2, etc.

@ From Taylor series expansion, error for midpoint rule
depends on second and higher derivatives of integrand,
which vanish for linear as well as constant polynomials

@ So midpoint rule integrates linear polynomials exactly,
hence its degree is 1 rather than 0

@ Similarly, error for Simpson’s rule depends on fourth and
higher derivatives, which vanish for cubics as well as |
quadratic polynomials, so Simpson’s rule is of degree 3 1
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Numerical Integration Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Accuracy of Newton-Cotes Quadrature

@ In general, odd-order Newton-Cotes rule gains exira
degree beyond that of polynomial interpolant on which it is
based

@ n-point Newton-Cotes rule is of degree n — 1 if n is even,
but of degree n if n is odd

@ This phenomenon is due to cancellation of positive and
negative errors

< interactive example >

Michael T. Heath Scientific Computing
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Newton-Cotes Weights

n\j| 112|314 5|6
1| 1

2 2 | 2
1 | 4 | 1

3 3 | 3| 3
3 919 ] 3

4 8 | 8 | 8 | 8

5 14 1 64 | 8 | 64 | 14
45 | 45 | 15 | 45 | 45

6 95 | 125 | 125 | 125 | 125 | 95
283 | 96 | 144 | 144 | 96 | 288



Numerical Integration Quadrature Rules
Adaptive Quadrature
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Drawbacks of Newton-Cotes Rules

@ Newton-Cotes quadrature rules are simple and often
effective, but they have drawbacks

@ Using large number of equally spaced nodes may incur
erratic behavior associated with high-degree polynomial
interpolation (e.g., weights may be negative)

@ Indeed, every n-point Newton-Cotes rule with n > 11 has at
least one negative weight, and > ", |w;| — oo as n — oo,
so Newton-Cotes rules become arbitrarily ill-conditioned

@ Newton-Cotes rules are not of highest degree possible for
number of nodes used

1
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Newton-Cotes Formulae: What Could Go Wrong?

Demo: newton_cotes.m and newton_cotes2.m

Newton-Cotes formulae are interpolatory.

For high n, Lagrange interpolants through uniform points are ill-

conditioned.

In quadrature, this conditioning is manifest through negative

quadrature weights (bad).

Lagrange Interpolants on n Points

—x

Closed Newton-Cotes Rule for f{x)=sin{ nx)on[0,1]

1

0.5¢

ol

A e

case ...

Imagine how the|gradient
of Q responds ta f; in this
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Gaussian Quadrature

@ (Gaussian quadrature rules are based on polynomial
interpolation, but nodes as well as weights are chosen to
maximize degree of resulting rule

@ With 2n parameters, we can attain degree of 2n — 1

@ Gaussian quadrature rules can be derived by method of
undetermined coefficients, but resulting system of moment
equations that determines nodes and weights is nonlinear

@ Also, nodes are usually irrational, even if endpoints of
interval are rational

@ Although inconvenient for hand computation, nodes and
weights are tabulated in advance and stored in subroutine
for use on computer 1
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Lagrange Polynomials: Good and Bad Point Distributions

=4 @—— S G
N

Y Uniform ' Gauss-Lobatto-Legendre

We can see that for N=8 one of the uniform weights is close to becoming negative.



Lagrange Polynomials: Good and Bad Point Distributions

GLL Bule for fix)=sini mx)on[0,1]

gll_txt.m

0.6} fy

0.6 F

0.2F

-0.2F

All weights are positive.



Numerical Integration Quadrature Rules
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Example: Gaussian Quadrature Rule

@ Derive two-point Gaussian rule on [—1, 1],

Ga(f) = w1 f(z1) + wa f(z2)

where nodes x; and weights w; are chosen to maximize
degree of resulting rule

@ We use method of undetermined coefficients, but now

nodes as well as weights are unknown parameters to be
determined

@ Four parameters are to be determined, so we expect to be

able to integrate cubic polynomials exactly, since cubics
depend on four parameters

i
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Example, continued

@ Requiring rule to integrate first four monomials exactly
gives moment equations

1

w1+ wy = lde =2t =2

1
wW1T] + Wors = rde = (z°/2)|1, =0
~1

2

w2 + wors = ¥ de = (3/3)]1, =2/3

3

w5 + wors = w3dr = (z* /D)L, =0

i
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Example, continued

@ One solution of this system of four nonlinear equations in
four unknowns is given by

331:—1/\/§, $2:1/\/§, w1:1, w2:1
@ Another solution reverses signs of 21 and x-

@ Resulting two-point Gaussian rule has form
Ga(f) = F(=1/V3) + f(1/V3)
and by construction it has degree three

@ In general, for each n there is unique n-point Gaussian
rule, and it is of degree 2n — 1

@ Gaussian quadrature rules can also be derived using
orthogonal polynomials 1
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C

Topics for Today

Gaussian quadrature
Composite trapezoidal rule
Richardson extrapolation
Romberg integration
Mechanical integration

Numerical differentiation (start)

Project proposals — almost done (should be out tonight)



Gauss Quadrature, |

1
Consider [ — / () d.
~1
Find w;, x; ¢ = 1,...,n, to maximize degree of accuracy, M.
e Cardinality, |.|: [Py | = M + 1
|wi| + |zi| = 2n

M+1 = 2n — M = 2n—1
e Indeed, it is possible to find z; and w; such that all polynomials of degree
< M = 2n — 1 are integrated ezxactly.
e The n nodes, z;, are the zeros of the nth-order Legendre polynomial.

e The weights, w;, are the integrals of the cardinal Lagrange polynomials
associated with these nodes:

1
w; = / ll(il?) diU, lz<l’> c IPn_l, ZZ(LUJ) = 5@]
-1

FE(€)

e Lrror scales like |1 — Q| ~C (2n)!

(@, exact for f(x) € Py, _1.)

e n nodes are roots of orthogonal polynomials



Numerical Integration Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Change of Interval

@ (Gaussian rules are somewhat more difficult to apply than
Newton-Cotes rules because weights and nodes are
usually derived for some specific interval, such as [—1, 1]

@ Given interval of integration [a, b] must be transformed into
standard interval for which nodes and weights have been

tabulated

@ To use quadrature rule tabulated on interval |«, 5],

B n
| t@ds =Y wifa

to approximate integral on interval |a, b],

we must change variable from z in [a, 8] to ¢ in |a, b] 1
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Numerical Integration Quadrature Rules
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Change of Interval, continued

@ Many transformations are possible, but simple linear
transformation

(b—a)r + af — ba
b —«

has advantage of preserving degree of quadrature rule

t —

e GGenerally, the translation is much simpler:

i+ 1
o= at ST

(b— a)

e When ¢ =—-1,t=a. When&=1,t=0.
e Here &;, i=1,... n, are the Gauss points on (-1,1). T
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Use of Gauss Quadrature

e Generally, the translation is much simpler:

&+ 1
2

tz' = a + (b—a)

¢ When ¢ =—1,t=a. Whené=1,t=0.
e Here &;, i=1,... n, are the Gauss points on (-1,1).

e So, you simply look up*the (&;, w;) pairs,
use the formula above to get ¢;, then evaluate

Qn = (b ; J szf(tz)

(*that is, call a function)



Use of Gauss Quadrature

Table 25.4 ABSCISSAS AND WEIGHT FACTORS FOR GAUSSIAN INTEGRATION

n

+1
dz =~ w; ;
I S @dem 2, wis (e
Abscissas=+x; (Zeros of Legendre Polynomials) Weight Factors=w;,
+x; w; +x; Wy
n=2 n=8
0.18343 46424 95650 0.36268 37833 78362
0.57735 02691 89626 1.00000 00000 00000 0.52553 24099 16329 0.31370 66458 77887
0.79666 64774 13627 0.22238 10344 53374
n=3 0.96028 98564 97536 0.10122 85362 90376
0.00000 00000 00000 0.88888 88888 88889
0.77459 66692 41483 0.55555 55555 55556 n=9
0.00000 00000 00000 0.33023 93550 01260
n=4 0.32425 34234 03809 0.31234 70770 40003
0.33998 10435 84856 0.65214 51548 62546 0.61337 14327 00590 0.26061 06964 02935
0.86113 63115 94053 0.34785 48451 37454 0.83603 11073 26636 0.18064 81606 94857
5 0.96816 02395 07626 0.08127 43883 61574
n=
0.00000 00000 00000 0.56888 88888 88889 n=10
0.53846 93101 05683 0.47862 86704 99366 0.14887 43389 81631 0.29552 42247 14753
0.90617 98459 38664 0.23692 68850 56189 0.43339 53941 29247 0.26926 67193 09996
0.67940 95682 99024 0.21908 63625 15982
n=6 0.86506 33666 88985 0.14945 13491 50581
0.23861 91860 83197 0.46791 39345 72691 0.97390 65285 17172 0.06667 13443 08688
0.66120 93864 66265 0.36076 15730 48139
0.93246 95142 03152 0.17132 44923 79170 n=12
0.12523 34085 11469 0.24914 70458 13403
n="T 0.36783 14989 98180 0.23349 25365 38355
0.00000 00000 00000 0.41795 91836 73469 0.58731 79542 86617 0.20316 74267 23066
0.40584 51513 77397 0.38183 00505 05119 0.76990 26741 94305 0.16007 83285 43346
0.74153 11855 99394 0.27970 53914 89277 0.90411 72563 70475 0.10693 93259 95318
0.94910 79123 42759 0.12948 49661 68870 0.98156 06342 46719 0.04717 53363 86512

 There is a lot of software, in most every language, for computing the
nodes and weights for all of the Gauss, Gauss-Lobatto, Gauss-Radau
rules (Chebyshev, Legendre, etc.)
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Gaussian Quadrature

@ Gaussian quadrature rules have maximal degree and
optimal accuracy for number of nodes used

@ Weights are always positive and approximate integral
always converges to exact integral as n — oo

@ Unfortunately, Gaussian rules of different orders have no
nodes in common (except possibly midpoint), so Gaussian
rules are not progressive  (except for Gauss-Chebyshev)

@ Thus, estimating error using Gaussian rules of different
order requires evaluating integrand function at full set of
nodes of both rules

i
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Gauss Quadrature Example

for n=2:10;
[z,w]=2wgll(n-1); $ Gauss-Lobatto-Legendre pts/wts

t=a + 0.5*%(z+1)*(b-a);
f=exp(t);

I = w'*fx(b-a)/2.;
err= abs(I-exact);
[n I err ]

semilogy(n,err, 'ro'); hold on 10 r
end;

10



Gauss Quadrature Derivation

Gauss Quadrature: 1
e Suppose g(z) € P, with zeros xg, x1, ..., Ty 1.
g(z) = Az™ 4+ ap_12™ 7t + -+ az + ag

= Az —xo)(r —x1) - (x — 1)

\
~~
eP,,

.
7

e LLet n < m — 1 and consider the first n + 1 zeros:

g(x) = (x—zo)(x—21) - (¥ —xp) Al —@ps1) (T — Tpy—1)

~"

= Gn+1(7) =:r(z)€ ]Pm—(n+1)

— Qn+1<x) ’I“(CU)



e Consider f(x) € P,, m > n+1,
pn(x) € P,, (Lagrange interpolating polynomial.)

pu(x) = flx), i =0,...,n.

e Then, let

g(zi) = flzi)) — palzi) = 0, i =0,....n,
g(x) = (x—mo)(@—21) (& —2p) A(@ = Znp1) -+ (¥ — Ty
— Qn—l—l(aj) T(ZE),

with 7(z) € Pp_pa1).

e It follows that, for any f(z) € P,,, m > n+ 1, we can write

f(@) = pu(2) + Guia(z)r(x),

with T‘(ZE) < ]Pm_(n+1).



e Notice that

/11 f(z)dz = /1 pn(z)dz + /1 i1 (2) 7(2) dz

1
with w; ::/ li(x) de.

1

e Note that the quadrature rule is exact iff

/1 g1 () r(z)de =

1

0.



Orthogonal Polynomials

e The Legendre polynomials of degree k, mi(x) € Py are
orthogonal polynomzials satisfying

o) = [ @ m@ar = 5,

1

o {my, m, ... ,m} form a basis (a spanning set) for IPy.

e That is, for any pi(z) € IPj there is a unique set of coefficients
v such that

pe(z) = ymo(r) + im(z) + ... + v ().

e Note that, if j > £, then

(Wjapk) — Z%’ (7Tj,7TZ') = 0.



e Returning to quadrature, our rule will be exact if

/1 1 (x) r(2)de = 0.

1
e We get to choose the nodes, xg, x1, ..., x,, that define ¢, 1.

e If we choose the nodes to be the zeros of m,1(x), then the
integral will vanish if r(x) € Py, with k < n + 1.

e Recall that r € IP,,,_(,41), which implies
m—(n+1) < n+1

m < 2n -+ 2.
m < 2n+ 1.

e Thus, using n + 1 nodes, xg, x1, ..., x,, (the zeros of m,,1), we have a
quadrature rule that is exact for all polynomials of up to degree 2n + 1.



Gauss Quadrature: II

e A common way to state the Gauss quadrature problem is, Find n + 1
weights, w;, and points, x;, that will maximize the degree of polynomial,
m, for which the quadrature rule will be exact.

e Since you have 2n + 2 degrees of freedom (w;, x;), ¢ = 0,...,n then you
should be able to be exact for a space of functions having cardinality
2n + 2.

e The cardinality of IP,, is m + 1.
o Setting m+1=2n+ 2 we find m = 2n + 1.



Gauss Lobatto Quadrature

e This is similar to the Gauss quadrature problem stated previously,
save that we constrain (o = —1 and z,, = +1, which means we now
have only 2n degrees of freedom.

e We should expect m = 2n — 1, and this is indeed the case when
we choose the ;s to be the zeros of (1 — 2%)P/(z).

e As before, the weights are the integrals of the Lagrange cardinal
functions, [;(x).



Arbitrary Domains

e Usually, we're interested in more general integrals, i.e.,

. /ab f(z)dz.

e The integral can be computed using a change of basis, f[z(£)], with

2(€) = a + T“(Hg).

e Note that

dr — b;adf — Jdt,

where J is the Jacobian associated with the map from [—1, 1] to [a, b].



e With this change of basis, we have

P= 0 [ rwe@ras = 50 [ e

Q

! ; . (Z wzf(fz))

2
S
DN ||
S
]
g
™
A
~_

l

S
Do ||

-
R
INGE
g
=
N~

e The quadrature weights stay the same.

1
e The quadrature points are given by x; = a + §(b —a)(1+&).



e Here, the &s are the zeros of m, 1(§) or (1 — &*)7! (€), depending on
whether one wants Gauss-Legendre (GL) or Gauss-Lobatto-Legendre
(GLL) quadrature.

e There are closed form expressions for the quadrature weights:

Gauss Gauss-Lobatto

2 2
w; — w; —

(1= &) P4 ()

where P, is the kth-order Legendre polynomial normalized such that
Pi(1) = 1.

e Most algorithms for finding the ;s are based on solving an eigenvalue
problem for a tridiagonal matrix (the companion matrix).

e The matlab script zwgll.m returns the set (&;, w;) for n 4+ 1 node points.



function [z,w] = zwgll(p);

o

Compute the p+1l Gauss-Lobatto-Legendre nodes z on [-1,1],
i.e. the zeros of the first derivative of the Legendre
polynomial of degree p plus -1 and 1 and the p+1l weights w.

oP ol

n = p+l;
z(l:n)=0; w(l:n)=0; z(1l)=-1; z(n)= 1;

if p>1,

if p==

z(2)=0;

else

M=zeros(p-1,p-1);

for i=1l:p-2,
M(i,i+1)=(1/2)*sqrt((i*(i+2))/((i+1/2)*(i+3/2)));
M(i+1,i)=M(i,i+1);

end;

[V,D]=eig(M);
z(2:p)=sort(eig(M));
end;
end;

$compute the weights w

w(l)=2/(p*(n)); w(n)=w(l);
for i=2:p,
x=z(1i); 2z0=1; zl=x;
for j=1l:p-1,
z2=xX.*z1*(2*j+1)/(j+1)-20*3/(j+1);
z0=zl1l; z1=2z2;
end;
w(i)=2/(p*(n)*z2*z2);
end;



Composite Rules

J Main Idea: Use your favorite rule on each panel and sum across

all panels.
 Particularly good if f(x) not differentiable at the knot points.

— O o o o o o o o o

a = Iy T Ty Ty Ty L L T =0b
) h , , i h
w, 5 h h h h h h 0]



Numerical Integration Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Composite Quadrature

@ Alternative to using more nodes and higher degree rule is
to subdivide original interval into subintervals, then apply
simple quadrature rule in each subinterval

@ Summing partial results then yields approximation to
overall integral

@ This approach is equivalent to using piecewise
interpolation to derive composite quadrature rule

@ Composite rule is always stable if underlying simple rule is
stable

@ Approximate integral converges to exact interval as
number of subintervals goes to infinity provided underlying
simple rule has degree at least zero I

Michael T. Heath Scientific Computing



Composite Quadrature Rules

Composite Trapezoidal (Q.) and Composite Simpson (Q¢s)
rules work by breaking the interval [a,b] into panels and then
applying either trapezoidal or Simpson method to each panel.

Q1 is the most common, particularly since Qg is readily derived
via Richardson extrapolation at no extra work.

Q1 can be combined with Richardson extrapolation to get higher
order accuracy, not quite competitive with Gauss quadrature, but
a significant improvement over Q. alone. (Using multiple
rounds of Richardson extrapolation is known as Romberg
integration.)

For periodic functions, Q.; is a Gauss quadrature rule.



Numerical Integration Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Examples: Composite Quadrature

@ Subdivide interval [a, b] into k subintervals of length
h=((b—-a)/k, lettingz; =a+jh,j=0,...,k

@ Composite midpoint rule

@ Composite trapezoid rule

1) = 3 I (fay) + )

Michael T. Heath Scientific Computing




Implementation of Composite Trapezoidal Rule

Assuming uniform spacing h = (b — a) /k,

k

Qer = Z@J = > Yt )
j=1

A h
— §fo—|—hf1—|—hf2—l—...+...—|-hfk—1—|‘§fk

k
= 2wl
j=1

a = I T To Ty Ty .. . . T =0

h h h h h h

b=

wij:



Composite Trapezoidal Rule

= [ f@de = U ) + O

= Q; + O(F)

= @ + th?) + higher order terms.

1
< "
G S g X /()]

k
I — Qcr| + h.o.t.:h3ch < h3km?X|cj| = h2mfx|cj| (b-a)
j=1

Recall, hk = (b-a).

f(x)
f(x.,)
X x

;



Other Considerations with Composite Trapezoidal Rule

Composite Trapezoidal Rule: (uniform spacing, n panels)

- _|_ _|_ n— _|_ n
Th::hfo f1+f1 f2+.”+f1 f
2 2 9

n—1 |
_ 5 4 Z N

D Jit gt fo
— sz‘f@’, wy = w, = —, w; = h otherwise.

i=0

Stable (w; > 0).



Composite Midpoint Rule: (uniform spacing, n panels)

My = B[ gy bt )

2

= h Zf§:| = hZf(iCo—l—ih—g)
| =1 1=1

n
1=0

(Note number of function evaluations.)

Accuracy? |I — I,| =77



Single Panel: x € [z; 1, z;].

e Taylor series about z;_1:
f@) = fiig + @—a)fi 1 + 5 fisy + 3] fiy +
e Integrate:
. ;i (x—x;_1)%|" (x— 2z, 1)%|"
e [ d@de = npy e g e SR g
Ti—1 —_— : _
288, 25 . 7 .,
= hfi_% + 0 + —3!23]27% + 0 + w15 dinl + 0 + ot liis 4.
h3 hs h’ :
= hf, — v e
Jioy * 5dis T 1oa07s T 3305607 T
h3 h® h’ ,
- Mz b .” 1 .w m
T oadiot T a0 T saamee e T

e Therefore, midpoint rule error (single panel) is:

- R h® . h'
M, =1 — —f", — —f" —
24]2_5 1920‘}2_5 322560

fm'
Vo — ..
=3

e Locally, midpoint rule is O(h?) accurate.



Trapezoidal Rule: (single panel)

e Taylor series about z,_

h p h 2]2”_% h 3]2@&

h / h ’ " h ’ "
flzi) = fioi + §fl_% + (§> fz_% -+ (5) fz_% 4o

N

e Take average:

h h3 ZU h7 UZ
§[fi—1+fi]:Mh+ﬁ~1+Mf 1+Wf 1+
T h3 " h5 1 v h7 1 vl
:]14—2'22(1——)]2%4‘@(1——)]0 l+ﬁ 1—— f1+
- h3 ho .
— ]Z o /! _ fw vt
+ 12f + 480f 53760f

_ jz —|—Ch3f” +C4h/5fvl +06h7fml 4.

e Leading-order error for trapezoid rule is twice that of midpoint.



Composite Rule: Sum trapezoid rule across n panels:

[Z fi+ fo + fn)

n

= Z g[fi_l + fil

i=1
= Z [fz + Cthfi”_% + b’ fﬁ% + 06h7f;)_i% + }
i=1

= ] + ch? [hZfi”;
=1

+ C4h4

hy £
=1

- I+ il—; [/ab " dx + h.o.t.] + cah? {/@b fdr + h.o.t.] +
.2
- T+ - s + o),

e Global truncation error is O(h?) and has a particularly elegant form.

e Can estimate f'(a) and f'(b) with O(h?) accurate formula to
yield O(h?) accuracy.

e With care, can also precisely define the coefficient for h*, h°,
and other terms (Euler-Maclaurin Sum Formula).



Examples.

e Apply (composite) trapezoidal rule for several endpoint

conditions, f'(a) and f'(b):
1. Standard case (nothing special).
2. Lucky case (f'(a) = f'(b) =0).
3. Unlucky case (f'(b) = —00).
4. Really lucky case (f*¥(a) = f*¥(b), k=1, 2,...).

for kase=1l:4;
for k=1:10; n=2"k; h=1/n; x=[0:n]'/n;

if kase==1; f=exp(x); end;
if kase==2; f=exp(xX).*(l-cos(2*pi*x)); end;
if kase==3; f=sqgrt(l-x.*x); end;
T if kase==4; f=log(2+cos(2*pi*x)); end;

- € w=1l + 0*x; w(l1)=0.5; w(end)=0.5; w=h*w;

Ih(k)=w'*f;
. X

= € (1 — COS 27737) if k>1; Id(k-1)=Ih(k-1)-Th(k); end;
if k>2; Ir(k-2)=Id(k-2)/Id(k-1); end;
hk(k)=h;

= log(2 + cos2mx)

. 2
e 30x

_ 6cos 307z .

QL’) = \/ 1 — SI;‘Q if k>2; RATIO = Id(k-1)/Id(k-2); [n RATIO]; end;

e quadl.m example.



Trapezoidal Rule Example

Trapezoidal Rule for f(x)=sin{ mx) on[0,1]

Quadrature: Trapezoidal Rule |

Let Z :

|
S
P
=
=8
8
{
il\g
£
~
B
|
O
2

—_ 1 n-1

For trapezoidal rule (with uniform spacing, say),

f f

0 \

r, = a + j-Az, Az := (b—a)/N, °

0 0.2 0.4 0.6 0.8 1
kS

w;, = Az, 7 =12 ...,n—1

Trapezoidal Rule Convergence: Jsin(x)

1 .,
wy = w, = =Az. 10y

2
5
STRLE

. 2 é %
e Convergence is O(N): c ",

@ 10 -*i:}&‘

|Z - Qn| ~ ON? | \

trap_v _gll.m, trap txt.m




Trapezoidal Rule vs. Gauss-Lobatto-Legendre Quadrature

Gauss-Lobatto-Legendre Quadrature

N

Let 7 := /ab flz)dx = > w;f(z;) = Qn.

7=0

b—a
zjp = a+ ——(&+ 1

¢; = GLL quadrature points = zeros of (1 — &%) Ly (€)

b—a /1

wj = —5— [ W)

b—
= Tapj, p; = GLL quadrature weight on [—1, 1]

e For smooth functions, convergence is O(e 7V):
|1Z — Qn| ~ Ce ™, o>0.

trap_v_gll.m, gll_txt.m

fix)

Integration Error

GLL Rule for f{x)=sin{ mx) on[0,1]

081

06}

04t

n.2p

-0.2F

0 0.2 04 0.6 0.8 1
X

GLL and Trapezoidal Rule Convergence: [sin(x)




Trapezoidal Rule vs. Gauss-Lobatto-Legendre Quadrature

Gauss-Lobatto-Legendre Quadrature I
06t fy
b N
Let 7 := /a f(x)dr ~ Zowjf(:tj) =: Qn. o)
]:
=" h =
—qa fg fnu
zjp = a+ ——(&+ 1 ”
¢; = GLL quadrature points = zeros of (1 — &%) Ly (€) e e o
b . GLL and Trapezoidal Rule Convergence: Jsin(x)
. a 1 10 . T T T T T T T T
w] - 2 —1 hj (5) d£ 1w* -T**’*wr,,}_%
8 P
b—a : |
= —5 P P = GLL quadrature weight on [—1,1] 5w ‘\
s, \ Spectral ]
¢ | | g=— Convergence
e For smooth functions, convergence is O(e 7V): - x
1
|1Z — Qx| ~ Ce ™, o>0. ol |
!

GLL Rule for f(x)=sin{ mx) on[0,1]




Working with 1D Nodal Bases

- What is the convergence behavior for highly oscillatory functions?

T T T T T T T T T T T
= |
0.8~ —
0.6~ -
04 -
0.2+ -
0 -
-0.2 - -
_04 — —
-0.6 —
-0.8 - -
_1 — —

1 | | | | | | | | 1 |

0 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9 1

trap_v_gll_ k.m



Strategies to improve to O(h') or higher?

e Endpoint Correction.

— Estimate f'(a) and f(b) to O(h?) using available f; data.

— How?

— Q: What happens if you don’t have at least O(h?) accuracy?

— - Requires knowing the ¢y coefficient. :(

e Richardson Extrapolation.

I,

Doy,

I + ch* + O(hY)

I + 4ch® + O(hY)

(Reuses f;, i=even!)

4 1
-1, — =1
[3 h 3 2h

Istvmpson !

|

trap _endpoint.m



Composite Trapezoidal + Richardson Extrapolation

For composite trapezoidal rule, can show that if f € C*5*! then

[ = Ior + &h* + &h' + Gh° + ... + Grh®™ + O(R*" )

Suggests the following strategy:
(1) I = Iorgy + &h° + é&h' + Gh® + ...
= ICT(Qh) + 52(2h)2 + 64(2h)4 + 66(2h)6 + ...

Take 4 x(1)-(2) (eliminate O(h?) term):

41 — 1 = 4ICT(h) — ]CT(Qh) + Cilh4 + C/6h6 + ...

[ = §10T<h> - %fcmm + &b’ + 4 This is Richardson
Tsom + ek + éh® + oot Extrapolation.
Here, Understand it.
4 1

]S(Qh) = §[CT(h)—§[CT(2h) Examp/e_' f:x2



Composite Trapezoidal + Richardson Extrapolation

For composite trapezoidal rule, can show that if f € C?£*! then

I = Ior 4 &h% + &bt + GRS + ... + &h™ + O(h*E

Suggests the following strategy:
(1) I = Iorgy + &h° + é&h' + Gh® + ...
(2) I = Icpen + @(2h)* + &(2h)* + &(20)° + ...

Take 4 x(1)-(2) (eliminate O(h?) term):

41 — 1 = 4]C’T(h) — ]CT(Qh) + Cilh4 + C/6h6 + ...
4 1 . .
I = gIC’T(h) — gICT(2h) + C4h4 + C6h6 + ...
= Igon + &h' + ¢h® + ho.t.

Here,

4 1

Isan) = §[CT(h) — §[CT(2h)




Composite Trapezoidal + Richardson Extrapolation

Can in fact show that if f € C?5*! then

I = Qcr &bt + 56h6 + ...+ 62Kh2K + O(h2K+1)

Suggests the following strategy:
(1) I = QC’T(h) + 52h2 + 64h4 + 66h6 + ...
(2) I = Qcoran + 2(2h)° + é(2h)* + &(2h)° + ...

Take 4 x(1)-(2) (eliminate O(h?) term):

Al —1 = 4Qcrm) — Qeren + dh* + gh® + ...

1

4 . .
I = gQCT(h) — ~Qcren + eaht + eh® + ..

= QS(Zh) + 66h6 + h.o.t.

4 1
gQCT(h) — gQCT(Qh)

Here, @
S(2h) New error — O(h4)



Richardson Extrapolation + Composite Trapezoidal Rule

Ty

—& 5 4 5 4 5 4 4 4 5 4 5 4 a—
a = Xg 1 To 3 T4 T =0
h:  w = h h h h h h 5
2h: w;: 2 0 2h 0 2h 0 2h .- 2v (k even)
4 1.~ . h 4h 2h 4h 2h 4h 2h 2h
sWi = 3Wi 3 3 El 3 El 3 E e

- Richardson + Composite Trapezoidal = Composite Simpson
- But we never compute it this way.

d Justuse Qcg = (4 Qcrpy— Qcrony) / 3

- No new function evaluations required!



Repeated Richardson Extrapolation
(Romberg Integration)

- We can repeat the extrapolation process to get rid of the O(h#) term.

J And repeat again, to get rid of O(h®) term.
Tvo = Trapezoidal rule withh = (b — a)/2"
J L .

To, — 4 Tk,j—41j - 71%—1,]—1
h To.0
h/2 T o T 1
h/4 Top  T2n1 122
h/8 T50 T31  T32  T33

O(R2) O(rY) O O(h®)

1 Idea works just as well if errors are of form c,h + c,h? + c;h® + ...

tabular form would involve 2 instead of 4/

. but



Repeated Richardson Extrapolation
(Romberg Integration)

- We can repeat the extrapolation process to get rid of the O(h#) term.
J And repeat again, to get rid of O(h®) term.

exact = exp(l)-1;
n=16;
x=0:n; x=x'/n; h=x(2)-x(1); f=exp(cos(5*x)); f=exp(-x.*x); f=exp(x);

T=zeros(5,5);

T(l,1)=16*h*(sum(f(l:16:end))-(£(1)+£f(n+1))/2); % n must be divisible by 16
T(2,1)= 8*h*(sum(f(l: 8:end))-(£f(1l)+£f(n+1))/2);

T(3,1)= 4*h*(sum(f(1l: 4:end))-(£(1)+£f(n+1))/2);

T(4,1)= 2*h*(sum(f(1l: 2:end))-(£f(1)+£f(n+1))/2);

T(5,1)= 1l*h*(sum(£f(1l: l:end))-(£f(1)+£f(n+l1))/2); % Finest approximation

format compact; format longe
T(:,1:1)
for j=2:5; for i=j:5; jl=j-1;

T(i,3)=((4"31)*T(1i,j-1)-T(i-1,3-1))/(4"31 - 1);
end;end;



Richardson Example

1
[:/ e’ dx
0

Initial values, all created from same 17 values of f(x).

.859140914229523
.753931092464825
.727221904557517
.720518592164302
.718841128579994

Using these 5 values, we build the table (extrapolate) to get more precision.

None
.859140914229
.753931092464
. 727221904557
.720518592164
.718841128579

Round 1

1.718861151876
1.718318841921
1.718284154699
1.718281974051

Round 2

1.718282687924
1.718281842218
1.718281828675

Round 3

1.718281828794
1.718281828460

Round 4

1.718281828459



Richardson Example

Error for Richardson Extrapolation (aka Romberg integration)

1/h

DN -

16

g N o0 W

None

.4086e-01
.5649e-02
.9401e-03
.2368e-03
.5930e-04

0(h~2)

Round 1

5.7932e-04
3.7013e-05
2.3262e-06
1.4559e-07
0(h~4)

Gauss Quadrature Results

~N o 0w NdB

(R = S S S

Qn

.8591e+00
.7189e+00
.7183e+00
.7183e+00
.7183e+00
.7183e+00

E
1.4086e-01
5.7932e-04
1.0995e-06
1.1666e-09
7.8426e-13

0

Round 2 Round 3

8.5947e-07

1.3759e-08 3.3549e-10

2.1631e-10 1.3429e-12
0(h~6) 0(h~8)

Round 4

3.2419e-14

0(h~10)



Richardson Extrapolation

Richardson Extrapolation Romberg Integration

Richardson Extrapolation

@ In many problems, such as numerical integration or
differentiation, approximate value for some quantity is
computed based on some step size

@ |deally, we would like to obtain limiting value as step size
approaches zero, but we cannot take step size arbitrarily
small because of excessive cost or rounding error

@ Based on values for nonzero step sizes, however, we may
be able to estimate value for step size of zero

@ One way to do this is called Richardson extrapolation

i

Michael T. Heath Scientific Computing



Richardson Extrapolation

Richardson Extrapolation Romberg Integration

Richardson Extrapolation, continued

@ Let F'(h) denote value obtained with step size h

@ |f we compute value of F' for some nonzero step sizes, and
if we know theoretical behavior of F'(h) as h — 0, then we
can extrapolate from known values to obtain approximate

value for F(0)
@ Suppose that
F(h)=ag+ a1h? + O(h")
as h — 0 for some p and r, with r > p

@ Assume we know values of p and r, but not ag or aq
(indeed, F(0) = ag is what we seek) i

Michael T. Heath Scientific Computing




Richardson Extrapolation

Richardson Extrapolation Romberg Integration

Richardson Extrapolation, continued

@ Suppose we have computed F' for two step sizes, say h
and h/q for some positive integer g

@ Then we have

F(h) — qag+alh? + O(hr)
F(h/q) = ao+ai(h/q)? +O(h") =ag+ a1q Ph? + O(h")

@ This system of two linear equations in two unknowns a
and a; Is easily solved to obtain

_ F(h) — F(h/q) "
ap = F'(h) P —1 +O(n")
@ Accuracy of improved value, ag, is O(h") T

Michael T. Heath Scientific Computing




Richardson Extrapolation

Richardson Extrapolation Romberg Integration

Richardson Extrapolation, continued

@ Extrapolated value, though improved, is still only
approximate, not exact, and its accuracy is still limited by
step size and arithmetic precision used

@ If F'(h) is known for several values of h, then extrapolation
process can be repeated to produce still more accurate
approximations, up to limitations imposed by
finite-precision arithmetic

i

Michael T. Heath Scientific Computing




Richardson Extrapolation

Richardson Extrapolation Romberg Integration

Example: Richardson Extrapolation

@ Use Richardson extrapolation to improve accuracy of finite
difference approximation to derivative of function sin(x) at
r=1

@ Using first-order accurate forward difference
approximation, we have

F(h) = ag + a1h + O(h?)
so p = 1 and r = 2 in this instance
@ Using step sizesof h = 0.5and h/2 = 0.25 (i.e., g = 2), we

obtain
in(1.5) — sin(1
Fry = So 52)58”1( ) _ 0.312048
in(1.25) — sin(1
F(hja) — Sh 0)25 Sinth) _ 0.430055 T

Michael T. Heath Scientific Computing




Richardson Extrapolation

Richardson Extrapolation Romberg Integration

Example, continued

@ Extrapolated value is then given by
['(h) — F(h/2)
(1/2) -1
@ For comparison, correctly rounded result is

cos(1) = 0.540302
F

F(0) = ag = F(h)+ = 2F(h/2)—F(h) = 0.548061

1.0
extrapolated value

/ computed values

| | — h
0 0.25 0.5

< interactive example > 1

Michael T. Heath Scientific Computing




Richardson Extrapolation

Richardson Extrapolation Romberg Integration

Example: Romberg Integration

@ As another example, evaluate

/2
/ sin(x) dx
0

@ Using composite trapezoid rule, we have
F(h) = ag + a1h? + O(h*)
so p = 2 and r = 4 in this instance
@ With h = /2, F(h) = F(n/2) = 0.785398

o With ¢ =2, F(h/2) = F(r/4) = 0.948059
-

Michael T. Heath Scientific Computing




Richardson Extrapolation

Richardson Extrapolation Romberg Integration

Example, continued

Extrapolated value is then given by

F(h) — F(h/2 A4F(h/2) — F(h
F(0) =ag = F(h)+ (h;_2 _(1/ ) = (h/ :))) () = 1.002280
which is substantially more accurate than values previously

computed (exact answer is 1)

a
/extrapolated value
1.0
0.5 - computed values
| = )

0 /4 W}Q

< interactive example > 1
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Richardson Extrapolation

Richardson Extrapolation Romberg Integration

Romberg Integration

@ Continued Richardson extrapolations using composite

trapezoid rule with successively halved step sizes is called
Romberg integration

@ |t is capable of producing very high accuracy (up to limit
imposed by arithmetic precision) for very smooth
integrands

@ |t is often implemented in automatic (though nonadaptive)
fashion, with extrapolations continuing until change in
successive values falls below specified error tolerance
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Numerical Integration Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Double Integrals

Approaches for evaluating double integrals include

@ Use automatic one-dimensional quadrature routine for
each dimension, one for outer integral and another for
iInner integral

@ Use product quadrature rule resulting from applying
one-dimensional rule to successive dimensions

@ Use non-product quadrature rule for regions such as
triangles

1
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Tensor-Product Integration

e As with interpolation, if domain can be expressed in rectangular form,
then can use tensor-products of 1D interpolants:

N N

Qn = Y  wiwif(&,&)

§=0 i=0
e The weights are just the 1D quadrature weights.

e More complex domains handled by mappings of [-1,1] to more general
shapes and/or by using composite multidomain integration.
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Numerical Integration Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Multiple Integrals

@ To evaluate multiple integrals in higher dimensions, only
generally viable approach is Monte Carlo method

@ Function is sampled at n points distributed randomly in
domain of integration, and mean of function values is
multiplied by area (or volume, etc.) of domain to obtain
estimate for integral

@ Error in estimate goes to zero as 1/+/n, so to gain one
additional decimal digit of accuracy requires increasing n
by factor of 100

@ For this reason, Monte Carlo calculations of integrals often
require millions of evaluations of integrand

< interactive example > 1
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Numerical Integration Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Multiple Integrals, continued

@ Monte Carlo method is not competitive for dimensions one
or two, but strength of method is that its convergence rate
IS independent of number of dimensions

@ For example, one million points in six dimensions amounts
to only ten points per dimension, which is much better than
any type of conventional quadrature rule would require for
same level of accuracy

< interactive example >
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Mechanical Integration

d In the 19 Century, integration was required for many engineering
disciplines, including engine and ship design.

3 For engine design, knowing the area swept out in the P-V diagram can
tell how much energy is produced during a single cycle.

A For ship design, knowing the displacement of the hull at different angles
of roll tells about the buoyancy. Knowing the moments is important for

stability.
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Mechanical Integration

2 In the mid-19t century, mathematicians
developed mechanical integrators that
can easily find the area under curves to
remarkable precision.

- They generally go by the name of
planimeters or polar planimeters.




Mechanical Integration

- Even more sophisticated integrators could compute first moments —
important for many design problems.

1 Later, we'll see mechanical integrators for Fourier transforms that were
responsible for the discovery of the Gibbs phenomenon. U of | had an
important role in this discovery.




Basic Idea of Planimeter

o Let
u = (u,v) = wvector field
0 0
V-u = a—z + a—;} = scalar field.

e Divergence Theorem:

/V'udA = /u~ﬁdS.
A S

e For the planimeter, consider u = (0, y):

0 0
= — —y =1
V-u 8$O+8yy

A = /1dA: /yey-ﬁdS.
A S






Action of Planimeter

A = /1dA: /yey-ﬁdS.
A S

vertical sweeps
cancel




Action of Planimeter

A = / 1dA = / yey, - nds. Wheel has net motion
A S

€y

Wheel has no net motion



Numerical Differentiation
Numerical Differentiation Finite Difference Approximations
Automatic Differentiation

Numerical Differentiation
@ Differentiation is inherently sensitive, as small
perturbations in data can cause large changes in result

@ Differentiation is inverse of integration, which is inherently
stable because of its smoothing effect

@ For example, two functions shown below have very similar
definite integrals but very different derivatives
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Numerical Differentiation
Numerical Differentiation Finite Difference Approximations
Automatic Differentiation

Numerical Differentiation, continued

@ To approximate derivative of function whose values are
known only at discrete set of points, good approach is to fit
some smooth function to given data and then differentiate
approximating function

@ If given data are sufficiently smooth, then interpolation may
be appropriate, but if data are noisy, then smoothing
approximating function, such as least squares spline, is
more appropriate

< interactive example >
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Numerical Differentiation Techniques

Three common approaches for deriving formulas
a Taylor series
a Taylor series + Richardson extrapolation

d Differentiate Lagrange interpolants
4 Readily programmed, see, e.g., Fornberg’s spectral methods text.
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Example Matlab Code

function[Jh] = interp_mat(xo,xi)

% Compute the interpolation matrix from xi to xo

no = length(xo);
ni = length(xi);
Jh = zeros(ni,no);
w = zeros(ni,2);

for i=l:no;

w = fd_weights_full(xo(i),xi,1);
Jh(:,1i) = w(:,1);

end;

Jh = Jh';

This routine evaluates the derivative based on all poin
in the stencils.

This set of routines comes from the appendix of
A Practical Guide to Pseudospectral Methods, B.
Cambridge Univ. Press, 1996.

Fornberg

Input parameters:

XX -- point at wich the approximations are to be accu
X =-- array of x-ordinates: x(0:n)
m -- highest order of derivative to be approxxmated
Output:
c -- set of coefficients c(0:n,0:m).
c(j,k) is to be applied at x(j) when
the kth derivative is approximated by a
stencil extending over x(0),x(l),...x(n).
Follows p. 168--169 of Fornberg's book.
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nction[Dh] = dhat(x)

Compute the interpolatory derivative matrix D_ij associated
with nodes x_j such that

~

w = D*u

returns the derivative of u at the points x_i.

length(x);

zeros(nl,2);

zeros(nl,nl);

r i=1:nl;

w = fd_weights_full(x(i),x,1);
Dh(:,i) = w(:,2);

d;

= Dh';

function[c] = fd_weights_full(xx,x,m);

nl = length(x);
ml = m+1;
cl 1.;
c4 = x(1) - xx;
c = zeros(nl,ml);
c(l,1) = 1.;
for i=1l:n; il = i+1;
mn = min(i,m); mnl = mn+1l;
c2 1.;
c5 = c4;
c4 = x(il)-xx;
for j=0:i-1; j1 = j+1;
c3 = x(il)-x(3jl);
c2 = c2*c3;
for k=mn:-1:1; k1l = k+1;
c(il,kl) = cl*(k*c(il-1,kl-1)-c5*%c(il-1,k1))/c
end;
c(il,1) = -cl*c5%c(il-1,1)/c2;
for k=mn:-1:1; k1l = k+1;
c(jl,kl) = (c4*c(jl,kl)-k*c(jl,kl-1))/c3;
end;
c(jl,1) = c4*c(jl,1)/c3;
end;
cl = c2;



Using Taylor Series to Derive Difference Formulas

Taylor Series:

/ h2 " h3 " h4 4
(1) fixn = fi+hfj+ S + ?fj + jf“(@r)

2
2)  fi = [

h? h? ht
(B) fin = fj = bfi+ S f = 5 ff + )

Approximation of fi:= f'(xz;):

1 T ) BT
(1) = ()] y = fi+ Sfj + ot
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Richardson Extrapolation

(5}1 . fJ—H fj = f], + Clh + 62h2 + Cgh3 +
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J Formula is improved from O(h) to O(h?)



Numerical Differentiation
Numerical Differentiation Finite Difference Approximations
Automatic Differentiation

Finite Difference Approximations

@ Given smooth function f: R — R, we wish to approximate
its first and second derivatives at point x

@ Consider Taylor series expansions

f'@). o J"(@), 3
5 T

fle—h) = @) flans T0h Ty

@ Solving for f/(x) in first series, obtain forward difference
approximation

pay — JEt ’32 —fl@) f”2(:v) Y Ca h,i ~ f(z)

which is first-order accurate since dominant term in
remainder of series is O(h) 1

flx+h) = flx)+ fl(x)h+
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Numerical Differentiation
Numerical Differentiation Finite Difference Approximations
Automatic Differentiation

Finite Difference Approximations, continued

@ Similarly, from second series derive backward difference

approximation
flay = @Sl @y,
. f@) = flz—h)
N h

which is also first-order accurate

@ Subtracting second series from first series gives centered
difference approximation
/ fl@at+h)—flx—h) (@),
fa) = 7 —
f(@+h)—fle—h)
2h
which is second-order accurate

a4
Y

1
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Numerical Differentiation
Numerical Differentiation Finite Difference Approximations
Automatic Differentiation

Finite Difference Approximations, continued

@ Adding both series together gives centered difference
approximation for second derivative
flz+h)=2f(x) + fle=h) D),
/! . _ ...
fle+h)=2f(x)+ flx—h)

Y
Y

which is also second-order accurate

@ Finite difference approximations can also be derived by
polynomial interpolation, which is less cumbersome than
Taylor series for higher-order accuracy or higher-order
derivatives, and is more easily generalized to unequally
spaced points

< interactive example > 1
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Example

- Use Richardson extrapolation to derive 5 point high-order
approximation to f(x;)



