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Triangular Systems
Solving Linear Systems Gaussian Elimination

Updating Solutions

Improving Accuracy

Solving Modified Problems

@ If right-hand side of linear system changes but matrix does
not, then LU factorization need not be repeated to solve

new sysiem

@ Only forward- and back-substitution need be repeated for
new right-hand side

@ This is substantial savings in work, since additional
triangular solutions cost only O(n?) work, in contrast to
O(n3) cost of factorization

T
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Triangular Systems
Solving Linear Systems Gaussian Elimination
Updating Solutions

Improving Accuracy

Sherman-Morrison Formula

@ Sometimes refactorization can be avoided even when
matrix does change

@ Sherman-Morrison formula gives inverse of matrix
resulting from rank-one change to matrix whose inverse is
already known

(A—uv)) ' =A"1+ A1 —viA ) ol A
where v and v are n-vectors

@ Evaluation of formula requires O(n?) work (for
matrix-vector multiplications) rather than O(n?) work
required for inversion 1
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Triangular Systems
Solving Linear Systems Gaussian Elimination

Updating Solutions
Improving Accuracy

Rank-One Updating of Solution

@ To solve linear system (A — uv? )z = b with new matrix,
use Sherman-Morrison formula to obtain

r = (A—uv!) b
= AW+ A ud-viA ) vl AT D

which can be implemented by following steps
o Solve Az =uforz,soz=A"1u
e Solve Ay =bfory,soy=A"1b
e Compute z =y + ((v'y)/(1 —v'2))z

@ If A is already factored, procedure requires only triangular
solutions and inner products, so only O(n?) work and no
explicit inverses 1
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Triangular Systems
Solving Linear Systems Gaussian Elimination

Updating Solutions

Improving Accuracy

Example: Rank-One Updating of Solution

@ Consider rank-one modification

2 4 =2 [x1] [ 2]
4 9 -3 Iro| — 8
_—2 —1 7_ _£C3_ _10_

(with 3, 2 entry changed) of system whose LU factorization
was computed in earlier example

_ Original Matrix
@ One way to choose update vectors is T 9 4 9
u=| 0 and v = |1 —2 -3 (]
__2_ _O_
so matrix of modified system is A — uv?’ I
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Triangular Systems
Solving Linear Systems Gaussian Elimination

Updating Solutions

Improving Accuracy

Example, continued

@ Using LU factorization of A to solve Az = v and Ay = b,

—3/2] —1
z=| 1/2| and y=| 2
—1/2 2

@ Final step computes updated solution

Q: Under what circumstances could the _ -

denominator be zero ? T — 1 2 = 3/2_ - 7
vy
1 —viz B 1—1/2 12 0

@ We have thus computed solution to modified system
without factoring modified matrix i
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Sherman Morrison

~

[1] Solve Ax = b:
A — LU ( O(n?) work )
Solve Ly = b,
Solve Ux =y ( O(n?) work ).

2] New problem:
(A—uvl)x=b. (different x and b)

Key Idea:

o (A — uVT) x differs from Ax by
only a small amount of information.

e Rewrite as: Ax+uy=D>b

vi=—vix +— vix+7=0



Sherman Morrison

Extended system:

Ax+~vu = b
vix+vy = 0



Sherman Morrison

Extended system: In matrix form:

AXx+~u = b [A u](x) _ (b)
vix+vy = 0 vio1 i 0



Sherman Morrison

Extended system:

Ax+~vu = b
vix+vy = 0

Eliminate for ~:

A u
0 1—-—viA—tu

In matrix form:

L

X
Y

) =

)



Sherman Morrison

Extended system: In matrix form:
AXx+~u = b [A u](x) B (b)
. —
vIix + v = 0 v 1 v 0

Eliminate for ~:

A u X B b
0 1—-vliA~lu 7y N —vIA=b

v=—(1- VTA_lu)_1 viA™ b



Sherman Morrison

Extended system: In matrix form:
AXx+~u = b [A u](x) _ (b)
vix + v = 0 viol v 0

Eliminate for ~:

0] (7) = (o)

v=—(1- VTA_lu)_1 viA™ Db
x=A"'(b—-uy)=A4" [b +u(l- VTA_lu)_1 VTA_lb}



Sherman Morrison

Extended system: In matrix form:
AXx+~u = b [A u](x) _ (b)
vix + v = 0 viol v 0

Eliminate for ~:

0] (7) = (o)

—1

V= — (1 — VTA_lu) viA b
x=A"'(b—-uy)=A4" [b +u(l- VTA_lll)_l VTA_lb}
(A - uVT)_1 — A1t + Al (1- VTA_lu)_1 viA=L



Sherman Morrison: Potential Singularity

e Consider the modified system: (A — UVT) x = b.

e The solution is

x = (A- uvT)_1 b
= |1+ A (1 vTaT ) VAT AT,

o If1 — viAtu = 0, failure.

e Why?



Sherman Morrison: Potential Singularity

o Let A:= (A — U.VT> and consider,
AAT = (A—uvh) AT
= ([ — uVTA_l) :
e Look at the product AA™ u,
AA N = (I — UVTA_l) u
= u—uviAlu
o If v A~'u =1, then
AA™™ = u—u = 0,
which means that A is singular since we assume that A~! exists.

e Thus, an unfortunate choice of u and v can lead to a singular
modified matrix and this singularity is indicated by v A~lu = 1.



Tensor Product Matrics

The tensor- (or Kronecker-) product of matrices A and B is denoted as
C =A®DKB
and is defined as the block matrix having entries

allB a12B CL1nB
a21B a22B a2nB

a,1 B a,9B - - QDB



Tensor-Product Matrices

 Tensor-product forms arise in many applications, including

a Density Functional Theory (DFT) in computational chemistry
(e.g., 7-dimensional tensors)

2 Partial differential equations
a Image processing (e.g., multidimensional FFTs)

A Machine learning (ML)

d Their importance in ML/AI applications is such that software developers
and computer architects are now designing fast tensor-contraction engines
to further accelerate tensor-product manipulations.



Tensor-Product Matrices

 In Computer Vision, there is even a conference series on this topic.

Topics Schedule Detailed Program Important Dates Info Organisers CVPR 2017

'H:S*JOOJ

+<,0@

=
- °G%
in Computer Visig,, 0@?



e Our interest here is to understand how tensor-product forms can yield
very rapid direct solvers for systems of the form Ax = b.

e There are two ways in which tensor-product-based matrices for the form
C = A® B accelerate computation:

1. They can be used to effect very fast matrix-vector products.

2. They can be used to effect very fast matrix-matrix products.

e To begin, we focus on the matrix-matrix products, which is a bit easier
to understand.



Product Rule for Tensor-Product Matrices

e Assume that the matrix pairs (D, A) and (£, B) are dimensioned such that the products DA
and E'B are well-defined.

o If
C = A®B and F =D ® E,
then, the matrix product F'C' is given by
FC = (D®F)(A® B)
= DA ® EB.

e This result follows from the definition of the Kronecker product, ®, and has many important
consequences.



Uses of the Product Rule: Inverses

(D® E) (A® B) = DA ® EB.

o IfC' := A ® B, then
cl .= A1 B
e Specifically,
C'C = (A'eB ") (4@ B) = A'"A® B'B
= Iy, ®Ig = 1,
where 4 and g are identity matrices equal in size to A and B, repsectively.

e Thus, the inverse of C' is the tensor-product of two much smaller matrices, A
and B.



Uses of the Product Rule: Inverses

e Example:

— Suppose A and B are full N x N matrices and C = A ® B is n X n with
n = N2.

— The LU factorization of C is

LU = (LA &) LB)(UA &) UB).

— What is the cost of computing the tensor product form of LU, rather
than LU directly as a function of N7

— What is the ratio (full time over tensor-product time) when N = 1007



The Curse of Dimensionality

e The advantage of the tensor-product representation increases with higher
dimensions.
e Suppose A;is N x N, for j =1,...,d, and
C = A A1 ® -+ ® Ay,

with Inverse

Cl'' = Ao AL @ @ AT

e Tensor-product forms are critical for eflicient computation in many large-
dimensional scientific problems.

e Application of the tensor operator, however, will take more work, since we
obviously have to touch n = 107 entries. We'll see in a moment that the cost
of application is ~ 2d - n - ni < O(n?).



e Consider d =7 and N = 10.

— The number of nonzeros in C' (if formed) is N4, which is 800 TB and
would cost you about $10,000 in disk drives.

— Factorization of the full form will take about 10 minutes on the world’s
fastest computer in 2021, or about 600 years on my mac.

— The factorization cost for the tensor product form is ~ 5000 operations.
A blink of the eye on your laptop.

— Application of C~! in tensor form will require about 2-7-10% ~ 1.4 x 10°
operations, which is less than a second if you sustain > 1 GFLOPS on
your computer.

e With the significant reduction of memory references and operations, the cost
of application of C~! in the high-rank tensor case is typically dominated by
the cost of transfering the right-hand side and solution vectors from and to
main memory. That is, the cost scales like cn = c¢N¢, where c is some measure
of the inverse memory bandwidth.

Thus, high-rank tensors transform a compute-bound problem to a memory-
bound one.



Uses of the Product Rule: Eigenvalues

e Suppose that A is an N x N matrix with the similarity transformation
(Chapter 4),

A = SASL

where S = [s;s9---sy] is the (full) matrix of eigenvectors of A and
A=diag();) is the diagonal matrix of corresponding eigenvalues.

That iS, ASZ' = S; )\2

o Let TMT ! denote the similarity transformation for B, with eigenvector
matrix 7" and eigenvalue matrix M.

e Then the similarity transformation for C' = A ® B is
A® B = (SAS™Y) ® (TMT™)

= (S@T) (AoM) (ST
= UNU ..

e Thus, we have diagonalized C by diagonalizing two smaller systems A
and B.



Fast Matrix-Vector Products

d Q: What is the cost of Cu, vs. the fast form for (A ® B)u ?



Fast Matrix-Vector Products via Tensor Contraction

e Consider evaluation of w = Cv := (A ® B)u.

e To avoid extra work and storage, we evaluate the product as
w = (A®1)(I ® B)u,
or
v = (I ® B)u,
w = (AR .
e Start with v = (I ® B)u.



Uy

Vo

V14N

Voi N

Uy

Vo

Uiy N

Uy N

I ® B

r




e In (/I ® B)u, B is applied M times to vectors of length M.

e We can reshape the vector u and output vector v to be M x N matrices, such
that v = (I ® B)u is computed as a matriz-matriz product:

(w

V2

U14+M

Vo+ M

VoM

( b11

ba1
b...

b...

\ b

b12

ba2

S

b...

S

b1m \
banr

b...

bym )

( uyp Ul4M

Uz  U24+M
K up UM




e [t is convenient to relabel the indices on u and v to match the contraction
indices of the tensor operator.

e Specifically, let u = (ujus ...u,)! and U be the matrix form with entries

Ui = w, fori :=i+M(—1).

e Then, with the same mapping for b — V', we can write

V = BU.

e In index form (convenient for later...)

M
Vij = Z BipUp;-
p=1



The next step is to compute w =

Wiy
Way

Win

ail

ail

ail

a2

ai2

(A ® I)v:

a2

aiN

ai1N

aiN

a21

a21

a21

a22

a2

a22

a2N

azN

a2N

V11

an1

aN1

aN1

anN2

aN2

anN2

aGNN

aANN

aGNN

A®I




e Here, the picture is less obvious than for the block-diagonal (I ® B) case.

e To make things simpler, we've enumerated v and w with the two-index sub-
script in the preceding slide such that they are already in tensor form.

e With a bit of inspection, it becomes clear that w = (A ® I)v is given by a
contraction that is similar to the preceding one. Namely,

M M M
Wi = D AigVig = 3 Ay Vig = 3 Vi Ay,
qg=1 q=1 q=1

e The last form is a proper matrix-matrix product of the form W = V AT,

e The complete contraction evaluation, w = (A ® B)u, for 2D (i.e., rank-2)
tensors is thus simply,

W = BUA".



e Contractions for higher-rank tensors take on a similar form.

e For example, a rank-3 contraction w = (A ® B ® C')u is evaluated as

Ns Np N¢

Na
Wigk = yj y: y: A BjgCip Upgr = Z Apr
r=1

r=1 g=1 p=1

Ng Nc
Z Bijq <Z Cipupqr) ] -
q=1 p=1

e The second form on the right implements the fast evaluation,

AI®(I®BI)(I®Ix (). [See Deville, F. , Mund, 2002]

e More generally, for w = (A9® A" ! ® ... ® AY)u, one has
Ny Ng_1 Ny
_ } : d Z d—1 Z 1.
wZ’IZ‘Q...Z’d — Aidjd Aid—ljd—l ¢t Ailjlu]1]2...]d
jdzl jd—lz1 jlzl

e If Ny =Ny =-.-= N;= N, then the amount of data movement is N+ dN?
loads for u and A* and N¢ stores (N9 = n).

e The number of operations is 2dN? - N = 2dnN = 2dn1+5, so we see that
these schemes are nearly linear in n for large values of d.



Contractions Pictorially

J1D:




Contractions Pictorially

12D: (A®B)U




Contractions Pictorially

13D: AQBRQCOU

B U y

For d > 2, the amount of data
(U) generally dominates the
C cost of loading the operators.

Tensor-based operators are
very fast in these cases.




Fast Solvers: Other Systems



Fast Solver Example

e Consider the system A;pu = f:

-

Unro

fll
f21

fan

f22

fMQ

le
fon

fMN




e This system is the 2D analog of the 1D finite-difference approximation
to the heat equation.

e That is,

[uiH,j — 2 + Ui—1 N Wi i1 — 2W; 5 + Wi j—1

Ax? Ay? ] = Ji

approximates the Poisson equation
0’u  0%u
- (@ + 8—y2> = flz,y),
with u = 0 on the boundary of the domain Q2 = [0, M Ax| x [0, NAy].

e The details of the discretization are not our principal focus at this point.

e Here, we explore fast direct (noniterative) solution methods.



1D Poisson System

)

O O O O O O
\y \y \) \y \) \y \y

0=: i) I X Tj—1 Zj Tji+1 s Tp+1 = 1

Figure 1: Finite difference grid on €2 := [0, 1].

Uip] — 2U; + Ui .
— J hQJ J — f], jzl,...,n.

2
e This expression approximates the 1D differential equation _d_z = f(x), u(0) =u(L) = 0.
x

e Each equation j relates u;_1, uj, and uj41 to f;.

e For this reason, the resulting matrix system is tridiagonal,

(2] R T

—1 2 —1 u9




Properties of A,

A, is symmetric, which implies it has real eigenvalues and an orthonormal set of eigenvectors

satisfying A,s; = Ajsj, sTs; = dij, where the Kronecker ¢;; equals 1 when ¢ = 5 and 0 when
i 7.

J
A, is also positive definite, which means that x’ A,x > 0 for all x # 0. It also implies A; > 0.
Symmetric positive definite (SPD) systems are particularly attractive because they can be
solved without pivoting using Cholesky factorization, A, = LLT, or iteratively using precon-
ditioned conjugate gradient (PCGQG) iteration. (For large sparse systems, PCG is typically the
best option.)

A, is sparse. It has a fixed maximal number of nonzeros per row, which implies that the
total number of nonzeros in A, is linear in the problem size, n. We say that the storage cost
for A, is O(n), meaning that there exists a constant C' independent of n such that the total
number of words to be stored is < Cn.

A, is banded with bandwidth w = 1, which implies that k;; = 0 for all |i — j| > w. A
consequence is that the storage bound for the Cholesky factor L is < (w + 1)n. For the 1D
case with w=1, the storage for L is thus O(n). As we shall see, the work to compute the
factors is O(w?n).



e Returning to the 2D case, we see that we can express Asp as ([, ® Az) + (4, ® I).

e The first term is nothing other than % being applied to each row (j) of u;; and the

second term amounts to applying % to each column (i) on the grid.

e For h := Ax = Ay, the left and right terms take on forms that we’ve already seen.

(4 I

Ay 1| -1, 2I,




0*u
Ox?

term







Asp = ([, ®A;) + (A4, ® 1),

e Because the Asp is the sum of two systems, we can’t use
the tensor-product inverse directly.

e We instead use the similarity transformation introduced earlier.
Specifically, compute the (small) similarity transformations

A, = S.AS Ay =Sy, S,



e Noting that I, = S, 1,5 and I, = Sy]ySy_l, we have

Ayp = (Sylysy—1 ® S;N,. S ) + (SyAySy—1 ® S, 1.5 1)
= (S, ® Su)(I, ® Ay + Ay ® L)(S;" © S,7)
— SAS!.

e The inverse is then A5 = SA™LS™L (verify!), or

Ash = (S, @ So)Iy ® Ay + Ay @ L)7'(S,! ® S,

e Notice that A := (I, ® A, + A, ® I,) is diagonal and easily inverted.



e The solution to Aspu = f is thus

u = (S, ® S,)(l, ® Ay + Ay @ L) (S, " @ S;DE.

e In fast matrix-matrix product form, this has a particularly compact ex-
pression:

U = S.[Do(S,'FS, )]sy,

where W = DoV is used to denote pointwise multiplication of the entries
of the matrix pair (D, V). That is, w;; := d;; * v;;.

e Note that, for the particular 1D A, and A, matrices in this example

that the eigenvectors are orthogonal. If we normalize the columns, then
S—1 = ST (same for y).






Computing || A||, and cond,(A).

e Recall: cond(A) = [[A7 ]| || All,
| Al] := maXHAXH,
0 || x|
x|l = (Z) = Vxx,
i=1
IxI = xx.

e From now on, drop the subscript “y”.

[x]]* = x'x

|Ax ||? = (Ax)" (Ax) = x"4TAx.



e Matrix norm:

A 2

HAHQ _ maXH XH 7
xA0 || x[]?

xT ATAx

= max ———

x£0  xIx

= Amax(ATA) =: spectral radius of (ATA).
e The symmetric positive definite matrix B := A’A has positive
eigenvalues.

e All symmetric matrices B have a complete set of orthonormal
eigenvectors satisfying

1 i=j

Bz, = \jz;, z]z; = 0 = {O it

e Note: If \; = \;, i # j, then can have z]z; # 0, but we can
orthogonalize z; and z; so that z! z; = 0 and

BZZ = )\ziz )\z = )\j

BZJ' — )\ij.



e Assume eigenvalues are sorted with A\ > Xy > -+ > A\,.
e For any x we have: x = 121 + 2y + -+ + CpZp.

o Let ||x]|| = 1.

x! Bx T
e Want to find max —= = max X BXx.
I[x]=1 X*X || x[|=1
n T n
o Note: xIx = g CiZ; g CiZ:
° - 1417 ] j
i=1 j=1
n n
S ) NLEP
i=1 j=1
n n
= C; cjél-j
i=1 j=1
n
= c? =1
i=1
n
_ 2



i=1 j=1

n T n
= ( CiZZ’> <Z Cj)\ij)
1=1 j=1

n n
= g g ¢i \jc;z} 7;

i=1 j=1

— Z Z C; )\jCj(SZ‘j

i=1 j=1

n

= Z N = N+ Bl -+ N,

i=1
2 2 2 )\Z
:)\1|:Cl+0262+"'+cn6n]7 0<6Z:>\_§17
1
NS (T TR B TR S

= M1 = (1=B)d + (1= Fo)es + -+ + (1= Bu)ey]
= A1 [l — some positive (or zero) numbers] .

e Expression is maximized when co =c3=---=¢, =0, = c¢; = 1.
e Maximum value x? Bx = A\ (B) = ).

e Similarly, can show min x? Bx = Amin(B) = A\,



e So, ||A]|? = max) A\(ATA) = spectral radius of ATA.

A—l 2
ONOW7 HA—lH2 _ max” )ZH .
x#0 ||x]]
o Let x = Ay:
A1 Av |12 2 Av |12 -1
||A—1||2 _ maXH };H — max ||Y||2 _ (mm” Y|2‘>
y#0 || Ayl y#0 ||Ayl| y#0 ||yl
1
Amin (ATA)

e So, condy(A) = || A7 - || All,

o >\max<ATA>
condy(A) = \/ N (ATA)




Symmetric Systems
Banded Systems

Special Types of Linear Systems lterative Methods

Special Types of Linear Systems

@ Work and storage can often be saved in solving linear
system if matrix has special properties

@ Examples include
o Symmetric: A= A", a;; = ay; forall 4, j
e Positive definite: x¥' Az > 0 for all x # 0

e Band: a;; = 0forall |i — j| > 8, where (3 is bandwidth of A

@ Sparse: most entries of A are zero

i
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Symmetric Positive Definite (SPD) Matrices

- Very common in optimization and physical processes
- Easiest example:

2 If Bisinvertible, then A :=B'B is SPD.
d SPD systems of the form A x = b can be solved using

1 (stable) Cholesky factorization A =LL" or

4 iteratively with the most robust iterative solver, conjugate
gradient iteration (generally with preconditioning, known as
preconditioned conjugate gradients, PCG).



Cholesky Factorization and SPD Matrices.

o Ais SPD: A= A" and x! Ax > 0 for all x # 0.

e Seek a symmetric factorization A = LLT (not LU).

— L not lower triangular but not unit lower triangular.

— That is, Lt; not necessarily 1.

o Alternatively, seek factorization A = LDL', where L is unit lower
triangular and D is diagonal.



e Start with LDL! = A.
e Clearly, LU = A with U = DL".
— Follows from uniqueness of LU factorization.
— D is a row scaling of L' and thus D;; = Uj;.
— A property of SPD matrices is that all pivots are positive.
— (Another property is that you do not need to pivot.)



e Consider standard update step:

il Cij
CLZ'j = CLZ']' — -
Qi Qjf
— Clz'j —
Al

e Usual multiplier column entries are l;x = a;/agk-
e Usual pivot row entries are uy; = ax; = aj.
e So, if we factor 1/dg, = 1/ay; out of U, we have:
dir(arj/arr) =  dirlk;
— U = D(D'U)
— DL’



e For Cholesky, we have
A = LDLT = IVDVDLT = LI,
with L = I/ D.



Symmetric Systems
Banded Systems

Special Types of Linear Systems lterative Methods

Symmetric Positive Definite Matrices

@ If A is symmetric and positive definite, then LU
factorization can be arranged so that U = L', which gives
Cholesky factorization

A=LL"?

where L is lower triangular with positive diagonal entries
@ Algorithm for computing it can be derived by equating
corresponding entries of A and LL"
@ In 2 x 2 case, for example,

[an a21] _ [511 0] [111 121]
az) Q92 lo1 l22]| | O oo
implies

1 =+ai, I =an/lin, la= \/%2 — 13, 1

Michael T. Heath Scientific Computing 77 /88




Cholesky Factorization (Text)

Algorithm 2.7 Cholesky Factorization

for k=1ton { loop over columns }
akk = /Qkk
fori=k+1ton
aik = Qik/Qxk { scale current column }
end
for j=k+1ton { from each remaining column,
fori=7jton subtract multiple
@ij = Qij — Qi - Qjk of current column }
end
end
end

After a row scaling, this is just standard LU decomposition,
exploiting symmetry in the LU factors and A. (U=LT)



Symmetric Systems
Banded Systems

Special Types of Linear Systems lterative Methods

Cholesky Factorization

@ One way to write resulting general algorithm, in which
Cholesky factor L overwrites original matrix A, is

forj =1ton
fork=1toj —1
fori=j5ton
Qij = QAij — ik~ Ajk
end
end
Ajj = A/ 4jj
fork=7+1ton
ajj = Qj/ajj
end
end i
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Symmetric Systems
Banded Systems

Special Types of Linear Systems lierative Methods

Cholesky Factorization, continued

@ Features of Cholesky algorithm for symmetric positive
definite matrices

e All n square roots are of positive numbers, so algorithm is
well defined

@ No pivoting is required to maintain numerical stability

e Only lower triangle of A is accessed, and hence upper
triangular portion need not be stored

e Only n?/6 multiplications and similar number of additions
are required
@ Thus, Cholesky factorization requires only about half work
and half storage compared with LU factorization of general
matrix by Gaussian elimination, and also avoids need for
pivoting

Michael T. Heath Scientific Computing
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Linear Algebra Very Short Summary
Main points:

A Conditioning of matrix cond(A) bounds our expected accuracy.
2 e.g., if cond(A) ~ 10° we expect at most 11 significant digits in x.
a Why?

2 We start with IEEE double precision — 16 digits. We lose 5 because
condition (A) ~ 10°, so we have 11 = 16-5.

a Stable algorithm (i.e., pivoting) important to realizing this bound.
d Some systems don'’t need pivoting (e.g., SPD, diagonally dominant)

a Unstable algorithms can sometimes be rescued with iterative
refinement.

2 Costs:
2 Full matrix = O(n?) storage, O(n3) work (wall-clock time)
0 Sparse or banded matrix, substantially less.



J The following slides present the book’s derivation of the LU
factorization process.

 I'll highlight a few of them that show the equivalence between the
outer product approach and the elementary elimination matrix
approach.



riangular Systems
Solving Linear Systems Gaussian Elimination

Updating Solutions

Improving Accuracy

Example: Triangular Linear System

2 4 =2 |z 2
0 1 1 ol — 4
0 0 4 [x3] 3

@ Using back-substitution for this upper triangular system,
last equation, 4x3 = 8, is solved directly to obtain x5 = 2

@ Next, z3 is substituted into second equation to obtain
Iro = 2

@ Finally, both x5 and x5 are substituted into first equation to

obtain ;1 = —1
i
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Triangular Systems
Solving Linear Systems Gaussian Elimination

Updating Solutions
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Elimination

@ To transform general linear system into triangular form, we
need to replace selected nonzero entries of matrix by
Zeros

@ This can be accomplished by taking linear combinations of
rows

@ Consider 2-vector a = [0”]

a2
@ If aq 750, then
1 0 ail . ai
—as/a; 1| [az| |0
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Elementary Elimination Matrices

@ More generally, we can annihilate all entries below kth
position in n-vector a by transformation

1 ... 0 0O --- 0| aq ] 'al'
0 --- 1 0 --- 0 ar ar

M p— p—
kA 0 - —mpyr 1 - 0| |awss 0
_() —m, 0 -- 1_ L ay | _0_

where m; = a;/ar, i =k+1,...,n

@ Divisor a, called pivot, must be nonzero 1
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Elementary Elimination Matrices, continued

@ Matrix M, called elementary elimination matrix, adds
multiple of row & to each subsequent row, with multipliers
m; chosen so that result is zero

@ M, is unit lower triangular and nonsingular

Q Mk p— I—mkez, Where my — [O,---goamk—|—17°“7mn]T

and e, is kth column of identity matrix

© M_ ' =1+ mgel, whichmeans M, ' =:L, is same as
M,. except signs of multipliers are reversed

1
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Elementary Elimination Matrices, continued

@ If M;, j > k, is another elementary elimination matrix, with
vector of multipliers m;, then

_ T LT T T
MiM; = I—mpe, —mje; +myeym;e;

_ T T
= I —mye;, —mje;

which means product is essentially “union,” and similarly
for product of inverses, Ly L ;

T
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Comment on update step and m,e’,

d Recall, v=C w € span{C}.
d . V=(vyv,...v,)=C(w,w,...w, ) € span{C}.

d IfC =c¢, i.e., Cisacolumn vector and therefore of rank 1,
then V is in span{C} and is of rank 1.

- All columns of V are multiples of c.

J Thus, W =cr' isan n x n matrix of rank 1.
A All columns are multiples of the first column and

2 All rows are multiples of the first row.
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Elementary Elimination Matrices, continued

@ Matrix M., called elementary elimination matrix, adds
multiple of row k to each subsequent row, with multipliers
m; chosen so that result is zero

@ M, is unit lower triangular and nonsingular

@ M, =1I—myel,where my =10,...,0,mpi1,...,my|"

and e, is kth column of identity matrix
© M, ' =1+ myel, whichmeans M, ' =L, is same as
M. except signs of multipliers are reversed
1
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Example: Elementary Elimination Matrices

2

@ Fora = 41,

__2_
1 0 0] [ 2] i
Ma=1-2 1 0 41 = |0
1 0 1f [—2] 0
and i L o
1 0 O 2 2
Ma= 10 1 O 41 = |4
0 1/2 1] |—-2] 0]

T
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Example, continued

@ Note that
1 0 0] 1 0 0]
Li=M;'=| 2 10|, Le=M;*=1{0 1 0
-1 0 1] 0 —1/2 1
and
1 0 0] 1 0 0]
M/M;,=|-2 1 0|, LiLy,=| 2 1 0
1 1/2 1] -1 —1/2 1]

T
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Gaussian Elimination

@ To reduce general linear system Ax = b to upper
triangular form, first choose M, with a1 as pivot, to
annihilate first column of A below first row

e System becomes M Ax = M, b, but solution is unchanged
@ Next choose M, using aso as pivot, to annihilate second
column of M; A below second row

e System becomes M, M; Ax = M, M, b, but solution is still
unchanged

@ Process continues for each successive column until all
subdiagonal entries have been zeroed

T
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Gaussian Elimination

@ To reduce general linear system Ax = b to upper
triangular form, first choose M, with a1 as pivot, to
annihilate first column of A below first row

e System becomes M Ax = M, b, but solution is unchanged

@ Next choose M, using aso as pivot, to annihilate second
column of M A below se€ond row

e System becomes ¥, M, Ax = M, M, b, but solution is still
unchanged

9 Technically, this should be a’,, , the 2-2 entry in A’ := M,A.
Thus, we don’t know all the pivots in advance.

T
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Gaussian Elimination, continued

@ Resulting upper triangular linear system

M, {---M{Ax = M, {---Myb
MAx = Mb

can be solved by back-substitution to obtain solution to
original linear system Ax = b

@ Process just described is called Gaussian elimination

1

Michael T. Heath Scientific Computing 41/ 88



Triangular Systems
Solving Linear Systems Gaussian Elimination

Updating Solutions

Improving Accuracy

LU Factorization

@ Product L;L; is unit lower triangular if £ < j, so
L=M'=M" M1 =L L,
IS unit lower triangular
@ By design, U = M A is upper triangular

@ So we have
A=LU

with L unit lower triangular and U upper triangular

@ Thus, Gaussian elimination produces LU factorization of
matrix into triangular factors I
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LU Factorization, continued

@ Having obtained LU factorization, Az = b becomes
LUx = b, and can be solved by forward-substitution in
lower triangular system Ly = b, followed by
back-substitution in upper triangular system Ux = y

@ Note that y = M b is same as transformed right-hand side
in Gaussian elimination

@ Gaussian elimination and LU factorization are two ways of
expressing same solution process

1
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Example: Gaussian Elimination

Solving Linear Systems

@ Use Gaussian elimination to solve linear system

2 4 =2 [x 2
Ax = 4 9 =3| |z2| =| 8| =0b
_—2 -3 7_ _xg_ _10_

@ To annihilate subdiagonal entries of first column of A,

1 0 O [ 2 4 —2] 2 4 =2
MA=|-2 1 0 4 9 3| =101 1
10 1] -2 -3 7/ [0 1 5
1 0 0] [ 2] [ 2
Mb=|-2 1 0 8 =1 4
1 0 1] |10] [12] 1
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Example, continued

@ To annihilate subdiagonal entry of second column of M; A,

1 0 0][2 4 —2 2 4 —2
MyMiA=|0 1 0||0 1 1|=1]0 1 1|=U,
0 -1 1|01 5 |00 4
10 0] [2] [2
MoMib= [0 1 0| | 4| =|4| =Mb
0 -1 1] [12] |8

T
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Example, continued

@ We have reduced original system to equivalent upper
triangular system

2 4 =2| |21 2
Ux= |0 1 1 To| = 4|1 = Mb
0 0 4] [z3 3

which can now be solved by back-substitution to obtain

T

Michael T. Heath Scientific Computing 46 / 88



Triangular Systems
Solving Linear Systems Gaussian Elimination

Updating Solutions

Improving Accuracy

Example, continued

@ To write out LU factorization explicitly,

1 0 011 O O 1 00
LiLo = 2 1 0 0O 1 0Of = 2 1 0| =L
-1 0 1]]0 1 1| |[-1 1 1]
so that
[ 2 4 —9 1 0 0] [2 4 —2]
A = 4 9 3| = 2 1 0 0 1 1| = LU
-2 -3 7] |-1 1 1]]0 0 4

1
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