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1 Fixed Point Iteration

We are interested in the error behavior of nonlinear iteration schemes. If 2* is our solution and xy,
the current guess, then the error is eg := xp — z*. If we have

lim ‘€k+1‘ — C,
k—soo |eg|”

we say that the convergence is of order r.

Consider a fixed-point iteration, zx11 = g(xg). Using a Taylor series expansion about z*, there
exists Oy € [zg, x*] such that

Tppr = glzr) = g(z") + exg’ (Or).

Subtracting x* = g(z*) from both sides, we have

ert1 = exg (0k),
or
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If ¢'(z*) # 0 then the order of convergence is r = 1 and C' = ¢'(z*).

If ¢'(z*) = 0, we take a two term Taylor series expansion,
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zpy1 = glar) = g(*) +erg'(2) +

from which we find
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for some &, € [xp, x*].



2 Secant Method

Newton’s method is a proper fixed point interation of the form zy1 = g(xy) with ¢’'(z*) = 0 (unless
there is a multiplicity of order m > 1 at z*).

By contrast, the secant method is of the form xpi 1 = g(xp,xx—1). Its error behavior is slightly
different and we’ll need to look at its precise formulation in some detail to arrive at the order of
convergence.

Recall Newton’s method
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For the secant method, we approximate f;, as
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which leads to
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Subtracting z* from both sides we have the error equation
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If the scheme is convergent, the first term approaches 1/f/(z*). For the second term, use a Taylor
series about x* and the fact that f(z*) = 0 to note that
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Thus
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Combining the results, we have
i B 1 f”(x*)
kinoo ek+1 - 2 f/(l'*) ek} ek}—l .
= Aepep_q. (1)



The next step is to determine the rate of convergence, r.

To do so, we use the rate of convergence ansatz,
lexta]l ~ Clel,
from which we also have
lex] ~ Cleg—|",
lex—1] ~ ((lexl/O)".
Using (1) and (2), we have
Cler|" ~ lexs1] ~  Ale|[ex—1]
~ Alek| ((lexl /)"
~ Aley|'trCT.

Consolidating,
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Since the left-hand side is a constant (in the limit), then we must have
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which has the solution




